BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 23516306)

  • 1. Shifting attentional priorities: control of spatial attention through hemispheric competition.
    Szczepanski SM; Kastner S
    J Neurosci; 2013 Mar; 33(12):5411-21. PubMed ID: 23516306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hemispheric differences in the voluntary control of spatial attention: direct evidence for a right-hemispheric dominance within frontal cortex.
    Duecker F; Formisano E; Sack AT
    J Cogn Neurosci; 2013 Aug; 25(8):1332-42. PubMed ID: 23574586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Testing the inter-hemispheric competition account of visual extinction with combined TMS/fMRI.
    Petitet P; Noonan MP; Bridge H; O'Reilly JX; O'Shea J
    Neuropsychologia; 2015 Jul; 74():63-73. PubMed ID: 25911128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of spatial attention control in frontal and parietal cortex.
    Szczepanski SM; Konen CS; Kastner S
    J Neurosci; 2010 Jan; 30(1):148-60. PubMed ID: 20053897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influences of Long-Term Memory-Guided Attention and Stimulus-Guided Attention on Visuospatial Representations within Human Intraparietal Sulcus.
    Rosen ML; Stern CE; Michalka SW; Devaney KJ; Somers DC
    J Neurosci; 2015 Aug; 35(32):11358-63. PubMed ID: 26269642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the Neural Mechanisms for Distractor Filtering and Their History-Contingent Modulation by Means of TMS.
    Lega C; Ferrante O; Marini F; Santandrea E; Cattaneo L; Chelazzi L
    J Neurosci; 2019 Sep; 39(38):7591-7603. PubMed ID: 31387915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A matter of hand: Causal links between hand dominance, structural organization of fronto-parietal attention networks, and variability in behavioural responses to transcranial magnetic stimulation.
    Cazzoli D; Chechlacz M
    Cortex; 2017 Jan; 86():230-246. PubMed ID: 27405259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic spatial coding within the dorsal frontoparietal network during a visual search task.
    Sommer WH; Kraft A; Schmidt S; Olma MC; Brandt SA
    PLoS One; 2008 Sep; 3(9):e3167. PubMed ID: 18779857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The hybrid model of attentional control: New insights into hemispheric asymmetries inferred from TMS research.
    Duecker F; Sack AT
    Neuropsychologia; 2015 Jul; 74():21-9. PubMed ID: 25451041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Callosal anisotropy predicts attentional network changes after parietal inhibitory stimulation.
    Schintu S; Cunningham CA; Freedberg M; Taylor P; Gotts SJ; Shomstein S; Wassermann EM
    Neuroimage; 2021 Feb; 226():117559. PubMed ID: 33189929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-dependent activation of parieto-frontal networks for directing attention to tactile space. A study with paired transcranial magnetic stimulation pulses in right-brain-damaged patients with extinction.
    Oliveri M; Rossini PM; Filippi MM; Traversa R; Cicinelli P; Palmieri MG; Pasqualetti P; Caltagirone C
    Brain; 2000 Sep; 123 ( Pt 9)():1939-47. PubMed ID: 10960057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TMS-EEG reveals hemispheric asymmetries in top-down influences of posterior intraparietal cortex on behavior and visual event-related potentials.
    Koivisto M; Grassini S; Hurme M; Salminen-Vaparanta N; Railo H; Vorobyev V; Tallus J; Paavilainen T; Revonsuo A
    Neuropsychologia; 2017 Dec; 107():94-101. PubMed ID: 29137988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural Variability within Frontoparietal Networks and Individual Differences in Attentional Functions: An Approach Using the Theory of Visual Attention.
    Chechlacz M; Gillebert CR; Vangkilde SA; Petersen A; Humphreys GW
    J Neurosci; 2015 Jul; 35(30):10647-58. PubMed ID: 26224851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frontoparietal mechanisms supporting attention to location and intensity of painful stimuli.
    Lobanov OV; Quevedo AS; Hadsel MS; Kraft RA; Coghill RC
    Pain; 2013 Sep; 154(9):1758-1768. PubMed ID: 23711484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frontal eye fields control attentional modulation of alpha and gamma oscillations in contralateral occipitoparietal cortex.
    Marshall TR; O'Shea J; Jensen O; Bergmann TO
    J Neurosci; 2015 Jan; 35(4):1638-47. PubMed ID: 25632139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concurrent TMS-fMRI Reveals Interactions between Dorsal and Ventral Attentional Systems.
    Leitão J; Thielscher A; Tünnerhoff J; Noppeney U
    J Neurosci; 2015 Aug; 35(32):11445-57. PubMed ID: 26269649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural Organization of the Corpus Callosum Predicts Attentional Shifts after Continuous Theta Burst Stimulation.
    Chechlacz M; Humphreys GW; Sotiropoulos SN; Kennard C; Cazzoli D
    J Neurosci; 2015 Nov; 35(46):15353-68. PubMed ID: 26586822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural mechanisms of visual attention: object-based selection of a region in space.
    Arrington CM; Carr TH; Mayer AR; Rao SM
    J Cogn Neurosci; 2000; 12 Suppl 2():106-17. PubMed ID: 11506651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of Inferior Frontal Junction (IFJ) in the Control of Feature versus Spatial Attention.
    Meyyappan S; Rajan A; Mangun GR; Ding M
    J Neurosci; 2021 Sep; 41(38):8065-8074. PubMed ID: 34380762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain Activations During Optokinetic Stimulation in Acute Right-Hemisphere Stroke Patients and Hemispatial Neglect: An fMRI Study.
    von der Gablentz J; Könemund I; Sprenger A; Heide W; Heldmann M; Helmchen C; Machner B
    Neurorehabil Neural Repair; 2019 Jul; 33(7):581-592. PubMed ID: 31189423
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 16.