These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 23516800)

  • 1. Spearcons (speech-based earcons) improve navigation performance in advanced auditory menus.
    Walker BN; Lindsay J; Nance A; Nakano Y; Palladino DK; Dingler T; Jeon M
    Hum Factors; 2013 Feb; 55(1):157-82. PubMed ID: 23516800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using Sound to Reduce Visual Distraction from In-vehicle Human-Machine Interfaces.
    Larsson P; Niemand M
    Traffic Inj Prev; 2015; 16 Suppl 1():S25-30. PubMed ID: 26027972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spearcons for Patient Monitoring: Laboratory Investigation Comparing Earcons and Spearcons.
    Li SYW; Tang TL; Hickling A; Yau S; Brecknell B; Sanderson PM
    Hum Factors; 2017 Aug; 59(5):765-781. PubMed ID: 28570832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring vital signs with time-compressed speech.
    Sanderson PM; Brecknell B; Leong S; Klueber S; Wolf E; Hickling A; Tang TL; Bell E; Li SYW; Loeb RG
    J Exp Psychol Appl; 2019 Dec; 25(4):647-673. PubMed ID: 30883150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spearcon Sequences for Monitoring Multiple Patients: Laboratory Investigation Comparing Two Auditory Display Designs.
    Li SYW; Tse MK; Brecknell B; Sanderson PM
    Hum Factors; 2019 Mar; 61(2):288-304. PubMed ID: 30260675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supporting multiple patient monitoring with head-worn displays and spearcons.
    Klueber S; Wolf E; Grundgeiger T; Brecknell B; Mohamed I; Sanderson P
    Appl Ergon; 2019 Jul; 78():86-96. PubMed ID: 31046963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping candidate within-vehicle auditory displays to their referents.
    McKeown D; Isherwood S
    Hum Factors; 2007 Jun; 49(3):417-28. PubMed ID: 17552306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of concurrent linguistic tasks on participants' identification of spearcons.
    Davidson T; Ryu YJ; Brecknell B; Loeb R; Sanderson P
    Appl Ergon; 2019 Nov; 81():102895. PubMed ID: 31422275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Auditory Sequences Presented With Spearcons Support Better Multiple Patient Monitoring Than Single-Patient Alarms: A Preclinical Simulation.
    Deschamps ML; Sanderson P; Waxenegger H; Mohamed I; Loeb RG
    Hum Factors; 2024 Mar; 66(3):872-890. PubMed ID: 35934986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spearcon compression levels influence the gap in comprehension between untrained and trained listeners.
    Srbinovska M; Salisbury IS; Loeb RG; Sanderson PM
    J Exp Psychol Appl; 2021 Mar; 27(1):69-83. PubMed ID: 32915012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A user study of auditory, head-up and multi-modal displays in vehicles.
    Jakus G; Dicke C; Sodnik J
    Appl Ergon; 2015 Jan; 46 Pt A():184-92. PubMed ID: 25151313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward a Better Understanding of In-Vehicle Auditory Warnings and Background Noise.
    Šabić E; Chen J; MacDonald JA
    Hum Factors; 2021 Mar; 63(2):312-335. PubMed ID: 31593500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trimodal speech perception: how residual acoustic hearing supplements cochlear-implant consonant recognition in the presence of visual cues.
    Sheffield BM; Schuchman G; Bernstein JG
    Ear Hear; 2015; 36(3):e99-112. PubMed ID: 25514796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concurrent 3-D sonifications enable the head-up monitoring of two interrelated aircraft navigation instruments.
    Towers J; Burgess-Limerick R; Riek S
    Hum Factors; 2014 Dec; 56(8):1414-27. PubMed ID: 25509822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Impact of Different Types of Auditory Warnings on Working Memory.
    Lei Z; Ma S; Li H; Yang Z
    Front Psychol; 2022; 13():780657. PubMed ID: 35282225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cross-modal interactions during perception of audiovisual speech and nonspeech signals: an fMRI study.
    Hertrich I; Dietrich S; Ackermann H
    J Cogn Neurosci; 2011 Jan; 23(1):221-37. PubMed ID: 20044895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Change deafness and the organizational properties of sounds.
    Gregg MK; Samuel AG
    J Exp Psychol Hum Percept Perform; 2008 Aug; 34(4):974-91. PubMed ID: 18665739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Speech perception with combined electric-acoustic stimulation and bilateral cochlear implants in a multisource noise field.
    Rader T; Fastl H; Baumann U
    Ear Hear; 2013; 34(3):324-32. PubMed ID: 23263408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of multitasking on interpreting a spearcon sequence display for monitoring multiple patients.
    Neary A; Li SYW; Salisbury I; Loeb RG; Sanderson PM
    Appl Ergon; 2023 Oct; 112():104072. PubMed ID: 37327694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Change of temporal-order judgment of sounds during long-lasting exposure to large-field visual motion.
    Teramoto W; Watanabe H; Umemura H
    Perception; 2008; 37(11):1649-66. PubMed ID: 19189730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.