These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 2351692)

  • 21. Motility and centrosomal organization during sea urchin and mouse fertilization.
    Schatten H; Schatten G
    Cell Motil Cytoskeleton; 1986; 6(2):163-75. PubMed ID: 3518956
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A calsequestrin-like protein in the endoplasmic reticulum of the sea urchin: localization and dynamics in the egg and first cell cycle embryo.
    Henson JH; Begg DA; Beaulieu SM; Fishkind DJ; Bonder EM; Terasaki M; Lebeche D; Kaminer B
    J Cell Biol; 1989 Jul; 109(1):149-61. PubMed ID: 2663877
    [TBL] [Abstract][Full Text] [Related]  

  • 23. T-1, a mitotic arrester, alters centrosome configurations in fertilized sea urchin eggs.
    Itoh TJ; Schatten H; Schatten G; Mazia D; Kobayashi A; Sato H
    Cell Motil Cytoskeleton; 1990; 16(2):146-54. PubMed ID: 2198112
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The centrosomal protein C-Nap1 is required for cell cycle-regulated centrosome cohesion.
    Mayor T; Stierhof YD; Tanaka K; Fry AM; Nigg EA
    J Cell Biol; 2000 Nov; 151(4):837-46. PubMed ID: 11076968
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The force-producing mechanism for centrosome separation during spindle formation in vertebrates is intrinsic to each aster.
    Waters JC; Cole RW; Rieder CL
    J Cell Biol; 1993 Jul; 122(2):361-72. PubMed ID: 8320259
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Experimental separation of pronuclei in fertilized sea urchin eggs: chromosomes do not organize a spindle in the absence of centrosomes.
    Sluder G; Rieder CL
    J Cell Biol; 1985 Mar; 100(3):897-903. PubMed ID: 3972900
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Taxol inhibits the nuclear movements during fertilization and induces asters in unfertilized sea urchin eggs.
    Schatten G; Schatten H; Bestor TH; Balczon R
    J Cell Biol; 1982 Aug; 94(2):455-65. PubMed ID: 6125518
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Drosophila parthenogenesis: a model for de novo centrosome assembly.
    Riparbelli MG; Callaini G
    Dev Biol; 2003 Aug; 260(2):298-313. PubMed ID: 12921733
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cold-treated centrosome: isolation of centrosomes from mitotic sea urchin eggs, production of an anticentrosomal antibody, and novel ultrastructural imaging.
    Thompson-Coffe C; Coffe G; Schatten H; Mazia D; Schatten G
    Cell Motil Cytoskeleton; 1996; 33(3):197-207. PubMed ID: 8674139
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Organisation and functional regulation of the centrosome in animal cells.
    Paoletti A; Bornens M
    Prog Cell Cycle Res; 1997; 3():285-99. PubMed ID: 9552423
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Centrosome inheritance in starfish zygotes: selective loss of the maternal centrosome after fertilization.
    Sluder G; Miller FJ; Lewis K; Davison ED; Rieder CL
    Dev Biol; 1989 Feb; 131(2):567-79. PubMed ID: 2912809
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of reduced protein synthesis on the cell cycle in sea urchin embryos.
    Dubé F
    J Cell Physiol; 1988 Dec; 137(3):545-52. PubMed ID: 2903865
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Centrosome detection in sea urchin eggs with a monoclonal antibody against Drosophila intermediate filament proteins: characterization of stages of the division cycle of centrosomes.
    Schatten H; Walter M; Mazia D; Biessmann H; Paweletz N; Coffe G; Schatten G
    Proc Natl Acad Sci U S A; 1987 Dec; 84(23):8488-92. PubMed ID: 3120191
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Immunocytochemical evidence for centrosomal phosphoproteins in mitotic sea urchin eggs.
    Kuriyama R; Rao PN; Borisy GG
    Cell Struct Funct; 1990 Feb; 15(1):13-20. PubMed ID: 2187620
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Behavior and function of paternally inherited centrioles in brown algal zygotes.
    Nagasato C
    J Plant Res; 2005 Dec; 118(6):361-9. PubMed ID: 16267628
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Centrosome inheritance in sheep zygotes: centrioles are contributed by the sperm.
    Crozet N; Dahirel M; Chesne P
    Microsc Res Tech; 2000 Jun; 49(5):445-50. PubMed ID: 10842371
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Centrosome assembly in vitro: role of gamma-tubulin recruitment in Xenopus sperm aster formation.
    Félix MA; Antony C; Wright M; Maro B
    J Cell Biol; 1994 Jan; 124(1-2):19-31. PubMed ID: 8294501
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fine structural studies of the bipolarization of the mitotic apparatus in the fertilized sea urchin egg. II. Bipolarization before the first mitosis.
    Paweletz N; Mazia D; Finze EM
    Eur J Cell Biol; 1987 Oct; 44(2):205-13. PubMed ID: 3691548
    [TBL] [Abstract][Full Text] [Related]  

  • 39. M-phase-specific protein kinase from mitotic sea urchin eggs: cyclic activation depends on protein synthesis and phosphorylation but does not require DNA or RNA synthesis.
    Arion D; Meijer L
    Exp Cell Res; 1989 Aug; 183(2):361-75. PubMed ID: 2475356
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential behavior of centrosomes in unequally dividing blastomeres during fourth cleavage of sea urchin embryos.
    Holy J; Schatten G
    J Cell Sci; 1991 Mar; 98 ( Pt 3)():423-31. PubMed ID: 2055969
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.