These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 23516956)

  • 41. Simulations of needle insertion by using a Eulerian hydrocode FEM and the experimental validations.
    Kataoka H; Noda S; Yokota H; Takagi S; Himeno R; Okazawa S
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):560-8. PubMed ID: 18982649
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Needle-tissue interaction modeling using ultrasound-based motion estimation: phantom study.
    Dehghan E; Wen X; Zahiri-Azar R; Marchal M; Salcudean SE
    Comput Aided Surg; 2008 Sep; 13(5):265-80. PubMed ID: 18821345
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Subject-specific non-linear biomechanical model of needle insertion into brain.
    Wittek A; Dutta-Roy T; Taylor Z; Horton A; Washio T; Chinzei K; Miller K
    Comput Methods Biomech Biomed Engin; 2008 Apr; 11(2):135-46. PubMed ID: 18297493
    [TBL] [Abstract][Full Text] [Related]  

  • 44. On modelling of anisotropic viscoelasticity for soft tissue simulation: numerical solution and GPU execution.
    Taylor ZA; Comas O; Cheng M; Passenger J; Hawkes DJ; Atkinson D; Ourselin S
    Med Image Anal; 2009 Apr; 13(2):234-44. PubMed ID: 19019721
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A numerical study on indentation properties of cortical bone tissue: influence of anisotropy.
    Demiral M; Abdel-Wahab A; Silberschmidt V
    Acta Bioeng Biomech; 2015; 17(2):3-14. PubMed ID: 26399190
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Interactive simulation of needle insertion models.
    DiMaio SP; Salcudean SE
    IEEE Trans Biomed Eng; 2005 Jul; 52(7):1167-79. PubMed ID: 16041980
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Towards intra-operative computerized planning of prostate cryosurgery.
    Tanaka D; Shimada K; Rossi MR; Rabin Y
    Int J Med Robot; 2007 Mar; 3():10-9. PubMed ID: 17441020
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A three-constituent damage model for arterial clamping in computer-assisted surgery.
    Famaey N; Vander Sloten J; Kuhl E
    Biomech Model Mechanobiol; 2013 Jan; 12(1):123-36. PubMed ID: 22446834
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Anatomically-driven soft-tissue simulation strategy for cranio-maxillofacial surgery using facial muscle template model.
    Kim H; Jürgens P; Nolte LP; Reyes M
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 1):61-8. PubMed ID: 20879215
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Modeling the mechanical response of in vivo human skin under a rich set of deformations.
    Flynn C; Taberner A; Nielsen P
    Ann Biomed Eng; 2011 Jul; 39(7):1935-46. PubMed ID: 21394556
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A strain-hardening bi-power law for the nonlinear behaviour of biological soft tissues.
    Nicolle S; Vezin P; Palierne JF
    J Biomech; 2010 Mar; 43(5):927-32. PubMed ID: 19954778
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Prediction of deformations during endovascular aortic aneurysm repair using finite element simulation.
    Kaladji A; Dumenil A; Castro M; Cardon A; Becquemin JP; Bou-Saïd B; Lucas A; Haigron P
    Comput Med Imaging Graph; 2013 Mar; 37(2):142-9. PubMed ID: 23562493
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Development of in vivo constitutive models for liver: application to surgical simulation.
    Lister K; Gao Z; Desai JP
    Ann Biomed Eng; 2011 Mar; 39(3):1060-73. PubMed ID: 21161684
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ultrasound-guided robot for flexible needle steering.
    Neubach Z; Shoham M
    IEEE Trans Biomed Eng; 2010 Apr; 57(4):799-805. PubMed ID: 19709957
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Two-phase computerized planning of cryosurgery using bubble-packing and force-field analogy.
    Tanaka D; Shimada K; Rabin Y
    J Biomech Eng; 2006 Feb; 128(1):49-58. PubMed ID: 16532617
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Development of an integrated needle insertion system with image guidance and deformation simulation.
    Kobayashi Y; Onishi A; Watanabe H; Hoshi T; Kawamura K; Hashizume M; Fujie MG
    Comput Med Imaging Graph; 2010 Jan; 34(1):9-18. PubMed ID: 19815388
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Predictive mechanics-based model for depth of cut (DOC) of waterjet in soft tissue for waterjet-assisted medical applications.
    Babaiasl M; Boccelli S; Chen Y; Yang F; Ding JL; Swensen JP
    Med Biol Eng Comput; 2020 Aug; 58(8):1845-1872. PubMed ID: 32514828
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A mechanical model representation of the in vivo creep behaviour of muscular bulk tissue.
    Aritan S; Oyadiji SO; Bartlett RM
    J Biomech; 2008 Aug; 41(12):2760-5. PubMed ID: 18619598
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Magnetic resonance imaging-targeted, 3D transrectal ultrasound-guided fusion biopsy for prostate cancer: Quantifying the impact of needle delivery error on diagnosis.
    Martin PR; Cool DW; Romagnoli C; Fenster A; Ward AD
    Med Phys; 2014 Jul; 41(7):073504. PubMed ID: 24989418
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mosquito proboscis-inspired needle insertion to reduce tissue deformation and organ displacement.
    Li ADR; Putra KB; Chen L; Montgomery JS; Shih A
    Sci Rep; 2020 Jul; 10(1):12248. PubMed ID: 32699296
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.