BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 23516959)

  • 1. Influence of active site location on catalytic activity in de novo-designed zinc metalloenzymes.
    Zastrow ML; Pecoraro VL
    J Am Chem Soc; 2013 Apr; 135(15):5895-903. PubMed ID: 23516959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of a zinc-finger hydrolase with a synthetic αββ protein.
    Srivastava KR; Durani S
    PLoS One; 2014; 9(5):e96234. PubMed ID: 24816915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the surface of human carbonic anhydrase for clues towards the design of isoform specific inhibitors.
    Pinard MA; Mahon B; McKenna R
    Biomed Res Int; 2015; 2015():453543. PubMed ID: 25811028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal binding specificity in carbonic anhydrase is influenced by conserved hydrophobic core residues.
    Hunt JA; Ahmed M; Fierke CA
    Biochemistry; 1999 Jul; 38(28):9054-62. PubMed ID: 10413479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of amino acid replacement at position 198 on catalytic properties of zinc-bound water in human carbonic anhydrase III.
    LoGrasso PV; Tu C; Chen X; Taoka S; Laipis PJ; Silverman DN
    Biochemistry; 1993 Jun; 32(22):5786-91. PubMed ID: 8504098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determinants of catalytic activity and stability of carbonic anhydrase II as revealed by random mutagenesis.
    Krebs JF; Fierke CA
    J Biol Chem; 1993 Jan; 268(2):948-54. PubMed ID: 8419374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms.
    Xu Y; Feng L; Jeffrey PD; Shi Y; Morel FM
    Nature; 2008 Mar; 452(7183):56-61. PubMed ID: 18322527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploration of the residues modulating the catalytic features of human carbonic anhydrase XIII by a site-specific mutagenesis approach.
    De Simone G; Di Fiore A; Truppo E; Langella E; Vullo D; Supuran CT; Monti SM
    J Enzyme Inhib Med Chem; 2019 Dec; 34(1):1506-1510. PubMed ID: 31431090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Designing hydrolytic zinc metalloenzymes.
    Zastrow ML; Pecoraro VL
    Biochemistry; 2014 Feb; 53(6):957-78. PubMed ID: 24506795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Allosteric site variants of Haemophilus influenzae beta-carbonic anhydrase.
    Rowlett RS; Tu C; Lee J; Herman AG; Chapnick DA; Shah SH; Gareiss PC
    Biochemistry; 2009 Jul; 48(26):6146-56. PubMed ID: 19459702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The catalytic properties of murine carbonic anhydrase VII.
    Earnhardt JN; Qian M; Tu C; Lakkis MM; Bergenhem NC; Laipis PJ; Tashian RE; Silverman DN
    Biochemistry; 1998 Jul; 37(30):10837-45. PubMed ID: 9692974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histidine --> carboxamide ligand substitutions in the zinc binding site of carbonic anhydrase II alter metal coordination geometry but retain catalytic activity.
    Lesburg CA; Huang C; Christianson DW; Fierke CA
    Biochemistry; 1997 Dec; 36(50):15780-91. PubMed ID: 9398308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutation of active site residues Asn67 to Ile, Gln92 to Val and Leu204 to Ser in human carbonic anhydrase II: influences on the catalytic activity and affinity for inhibitors.
    Turkoglu S; Maresca A; Alper M; Kockar F; Işık S; Sinan S; Ozensoy O; Arslan O; Supuran CT
    Bioorg Med Chem; 2012 Apr; 20(7):2208-13. PubMed ID: 22386980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The structural basis of the low catalytic activities of the two minor β-carbonic anhydrases of the filamentous fungus Aspergillus fumigatus.
    Kim S; Kim NJ; Hong S; Kim S; Sung J; Jin MS
    J Struct Biol; 2019 Oct; 208(1):61-68. PubMed ID: 31376470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selection of carbonic anhydrase variants displayed on phage. Aromatic residues in zinc binding site enhance metal affinity and equilibration kinetics.
    Hunt JA; Fierke CA
    J Biol Chem; 1997 Aug; 272(33):20364-72. PubMed ID: 9252341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering a cysteine ligand into the zinc binding site of human carbonic anhydrase II.
    Kiefer LL; Krebs JF; Paterno SA; Fierke CA
    Biochemistry; 1993 Sep; 32(38):9896-900. PubMed ID: 8399158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamical study, hydrogen bond analysis, and constant pH simulations of the beta carbonic anhydrase of Methanobacterium thermoautotrophicum.
    Bracht F; de Alencastro RB
    J Biomol Struct Dyn; 2016; 34(2):259-71. PubMed ID: 25874810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of the catalytic domain of the tumor-associated human carbonic anhydrase IX.
    Alterio V; Hilvo M; Di Fiore A; Supuran CT; Pan P; Parkkila S; Scaloni A; Pastorek J; Pastorekova S; Pedone C; Scozzafava A; Monti SM; De Simone G
    Proc Natl Acad Sci U S A; 2009 Sep; 106(38):16233-8. PubMed ID: 19805286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A closer look at the active site of gamma-class carbonic anhydrases: high-resolution crystallographic studies of the carbonic anhydrase from Methanosarcina thermophila.
    Iverson TM; Alber BE; Kisker C; Ferry JG; Rees DC
    Biochemistry; 2000 Aug; 39(31):9222-31. PubMed ID: 10924115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-assisted redesign of a protein-zinc-binding site with femtomolar affinity.
    Ippolito JA; Baird TT; McGee SA; Christianson DW; Fierke CA
    Proc Natl Acad Sci U S A; 1995 May; 92(11):5017-21. PubMed ID: 7761440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.