These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
502 related articles for article (PubMed ID: 23517224)
1. Graphene-wrapped polyaniline hollow spheres as novel hybrid electrode materials for supercapacitor applications. Fan W; Zhang C; Tjiu WW; Pramoda KP; He C; Liu T ACS Appl Mater Interfaces; 2013 Apr; 5(8):3382-91. PubMed ID: 23517224 [TBL] [Abstract][Full Text] [Related]
2. Unique Core-Shell Nanorod Arrays with Polyaniline Deposited into Mesoporous NiCo2O4 Support for High-Performance Supercapacitor Electrodes. Jabeen N; Xia Q; Yang M; Xia H ACS Appl Mater Interfaces; 2016 Mar; 8(9):6093-100. PubMed ID: 26889785 [TBL] [Abstract][Full Text] [Related]
3. Graphene-wrapped polyaniline nanowire arrays on nitrogen-doped carbon fabric as novel flexible hybrid electrode materials for high-performance supercapacitor. Yu P; Li Y; Zhao X; Wu L; Zhang Q Langmuir; 2014 May; 30(18):5306-13. PubMed ID: 24761945 [TBL] [Abstract][Full Text] [Related]
4. Fabrication of Polyaniline/Graphene/Polyester Textile Electrode Materials for Flexible Supercapacitors with High Capacitance and Cycling Stability. Shao F; Bian SW; Zhu Q; Guo MX; Liu S; Peng YH Chem Asian J; 2016 Jul; 11(13):1906-12. PubMed ID: 27156174 [TBL] [Abstract][Full Text] [Related]
5. Enhanced electrochemical performance of highly porous supercapacitor electrodes based on solution processed polyaniline thin films. Cho S; Shin KH; Jang J ACS Appl Mater Interfaces; 2013 Sep; 5(18):9186-93. PubMed ID: 24032539 [TBL] [Abstract][Full Text] [Related]
6. Preparation of supercapacitor electrodes through selection of graphene surface functionalities. Lai L; Yang H; Wang L; Teh BK; Zhong J; Chou H; Chen L; Chen W; Shen Z; Ruoff RS; Lin J ACS Nano; 2012 Jul; 6(7):5941-51. PubMed ID: 22632101 [TBL] [Abstract][Full Text] [Related]
7. 3D polyaniline porous layer anchored pillared graphene sheets: enhanced interface joined with high conductivity for better charge storage applications. Sekar P; Anothumakkool B; Kurungot S ACS Appl Mater Interfaces; 2015 Apr; 7(14):7661-9. PubMed ID: 25783045 [TBL] [Abstract][Full Text] [Related]
8. Oriented arrays of polyaniline nanorods grown on graphite nanosheets for an electrochemical supercapacitor. Li Y; Zhao X; Yu P; Zhang Q Langmuir; 2013 Jan; 29(1):493-500. PubMed ID: 23205664 [TBL] [Abstract][Full Text] [Related]
9. High-performance asymmetric supercapacitor based on hierarchical nanocomposites of polyaniline nanoarrays on graphene oxide and its derived N-doped carbon nanoarrays grown on graphene sheets. Tabrizi AG; Arsalani N; Mohammadi A; Ghadimi LS; Ahadzadeh I J Colloid Interface Sci; 2018 Dec; 531():369-381. PubMed ID: 30041114 [TBL] [Abstract][Full Text] [Related]
11. High-performance supercapacitors based on hollow polyaniline nanofibers by electrospinning. Miao YE; Fan W; Chen D; Liu T ACS Appl Mater Interfaces; 2013 May; 5(10):4423-8. PubMed ID: 23586693 [TBL] [Abstract][Full Text] [Related]
12. Hierarchical composites of polyaniline-graphene nanoribbons-carbon nanotubes as electrode materials in all-solid-state supercapacitors. Liu M; Miao YE; Zhang C; Tjiu WW; Yang Z; Peng H; Liu T Nanoscale; 2013 Aug; 5(16):7312-20. PubMed ID: 23821299 [TBL] [Abstract][Full Text] [Related]
13. Effect of graphene oxide on the properties of its composite with polyaniline. Wang H; Hao Q; Yang X; Lu L; Wang X ACS Appl Mater Interfaces; 2010 Mar; 2(3):821-8. PubMed ID: 20356287 [TBL] [Abstract][Full Text] [Related]
14. Electrochemical Performance of Graphene Oxide/Polyaniline Composite for Supercapacitor Electrode. Li J; Xie H; Li Y J Nanosci Nanotechnol; 2015 Apr; 15(4):3280-3. PubMed ID: 26353578 [TBL] [Abstract][Full Text] [Related]
15. Improvement of capacitive performance of polyaniline based hybrid supercapacitor. Rahman MM; Joy PM; Uddin MN; Mukhlish MZB; Khan MMR Heliyon; 2021 Jul; 7(7):e07407. PubMed ID: 34286117 [TBL] [Abstract][Full Text] [Related]
16. Graphene-hollow PPy sphere 3D-nanoarchitecture with enhanced electrochemical performance. Zhang J; Yu Y; Liu L; Wu Y Nanoscale; 2013 Apr; 5(7):3052-7. PubMed ID: 23463264 [TBL] [Abstract][Full Text] [Related]
17. Development of 3D Urchin-Shaped Coaxial Manganese Dioxide@Polyaniline (MnO Ghosh K; Yue CY; Sk MM; Jena RK ACS Appl Mater Interfaces; 2017 May; 9(18):15350-15363. PubMed ID: 28414212 [TBL] [Abstract][Full Text] [Related]
18. Facile preparation and enhanced capacitance of the polyaniline/sodium alginate nanofiber network for supercapacitors. Li Y; Zhao X; Xu Q; Zhang Q; Chen D Langmuir; 2011 May; 27(10):6458-63. PubMed ID: 21488622 [TBL] [Abstract][Full Text] [Related]
19. Layer-by-layer self-assembled multilayer films composed of graphene/polyaniline bilayers: high-energy electrode materials for supercapacitors. Sarker AK; Hong JD Langmuir; 2012 Aug; 28(34):12637-46. PubMed ID: 22866750 [TBL] [Abstract][Full Text] [Related]
20. Novel and high-performance asymmetric micro-supercapacitors based on graphene quantum dots and polyaniline nanofibers. Liu W; Yan X; Chen J; Feng Y; Xue Q Nanoscale; 2013 Jul; 5(13):6053-62. PubMed ID: 23720009 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]