These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
502 related articles for article (PubMed ID: 23517224)
21. In situ electrochemical polymerization of a nanorod-PANI-Graphene composite in a reverse micelle electrolyte and its application in a supercapacitor. Hu L; Tu J; Jiao S; Hou J; Zhu H; Fray DJ Phys Chem Chem Phys; 2012 Dec; 14(45):15652-6. PubMed ID: 23076399 [TBL] [Abstract][Full Text] [Related]
22. Freestanding polyaniline nanorods grown on graphene for highly capacitive energy storage. Li Z; Qin Z; Yang B; Guo J; Wang H; Zhang W; Lv X; Stack A Nanotechnology; 2015 Feb; 26(6):065401. PubMed ID: 25611749 [TBL] [Abstract][Full Text] [Related]
23. α-Fe2O3@PANI Core-Shell Nanowire Arrays as Negative Electrodes for Asymmetric Supercapacitors. Lu XF; Chen XY; Zhou W; Tong YX; Li GR ACS Appl Mater Interfaces; 2015 Jul; 7(27):14843-50. PubMed ID: 26090902 [TBL] [Abstract][Full Text] [Related]
24. Controllable Preparation of Polyaniline-Graphene Nanocomposites using Functionalized Graphene for Supercapacitor Electrodes. Liu X; Zheng Y; Wang X Chemistry; 2015 Jul; 21(29):10408-15. PubMed ID: 26073447 [TBL] [Abstract][Full Text] [Related]
25. A three-dimensional graphene aerogel containing solvent-free polyaniline fluid for high performance supercapacitors. Gao Z; Yang J; Huang J; Xiong C; Yang Q Nanoscale; 2017 Nov; 9(45):17710-17716. PubMed ID: 29130462 [TBL] [Abstract][Full Text] [Related]
26. Polyaniline-Stabilized Intertwined Network-like Ferrocene/Graphene Nanoarchitecture for Supercapacitor Application. Adhikari A; Oraon R; Tiwari SK; Jena NK; Lee JH; Kim NH; Nayak GC Chem Asian J; 2017 Apr; 12(8):900-909. PubMed ID: 28225566 [TBL] [Abstract][Full Text] [Related]
27. Fabrication of high-surface-area graphene/polyaniline nanocomposites and their application in supercapacitors. Li ZF; Zhang H; Liu Q; Sun L; Stanciu L; Xie J ACS Appl Mater Interfaces; 2013 Apr; 5(7):2685-91. PubMed ID: 23480549 [TBL] [Abstract][Full Text] [Related]
28. Hollow core-shell ZnO@ZIF-8 on carbon cloth for flexible supercapacitors with ultrahigh areal capacitance. Cao XM; Han ZB Chem Commun (Camb); 2019 Feb; 55(12):1746-1749. PubMed ID: 30663750 [TBL] [Abstract][Full Text] [Related]
29. A nanostructured graphene/polyaniline hybrid material for supercapacitors. Wang H; Hao Q; Yang X; Lu L; Wang X Nanoscale; 2010 Oct; 2(10):2164-70. PubMed ID: 20689894 [TBL] [Abstract][Full Text] [Related]
30. Strongly coupled polyaniline/graphene hybrids with much enhanced capacitance performance. Xi X; Liu R; Huang T; Xu Y; Wu D J Colloid Interface Sci; 2016 Dec; 483():34-40. PubMed ID: 27544447 [TBL] [Abstract][Full Text] [Related]
31. Three-Dimensional Tubular MoS2/PANI Hybrid Electrode for High Rate Performance Supercapacitor. Ren L; Zhang G; Yan Z; Kang L; Xu H; Shi F; Lei Z; Liu ZH ACS Appl Mater Interfaces; 2015 Dec; 7(51):28294-302. PubMed ID: 26645314 [TBL] [Abstract][Full Text] [Related]
32. Novel layered polyaniline-poly(hydroquinone)/graphene film as supercapacitor electrode with enhanced rate performance and cycling stability. Ren L; Zhang G; Lei J; Wang Y; Hu D J Colloid Interface Sci; 2018 Feb; 512():300-307. PubMed ID: 29078181 [TBL] [Abstract][Full Text] [Related]
33. Freestanding graphene paper supported three-dimensional porous graphene-polyaniline nanocomposite synthesized by inkjet printing and in flexible all-solid-state supercapacitor. Chi K; Zhang Z; Xi J; Huang Y; Xiao F; Wang S; Liu Y ACS Appl Mater Interfaces; 2014 Sep; 6(18):16312-9. PubMed ID: 25180808 [TBL] [Abstract][Full Text] [Related]
34. Three-dimensional skeleton networks of graphene wrapped polyaniline nanofibers: an excellent structure for high-performance flexible solid-state supercapacitors. Hu N; Zhang L; Yang C; Zhao J; Yang Z; Wei H; Liao H; Feng Z; Fisher A; Zhang Y; Xu ZJ Sci Rep; 2016 Jan; 6():19777. PubMed ID: 26795067 [TBL] [Abstract][Full Text] [Related]
35. Synergetic Effect of Polyaniline and Graphene in Their Composite Supercapacitor Electrodes: Impact of Components and Parameters of Chemical Oxidative Polymerization. Okhay O; Tkach A Nanomaterials (Basel); 2022 Jul; 12(15):. PubMed ID: 35893498 [TBL] [Abstract][Full Text] [Related]
36. Network structure of SnO Wang Q; Zong Q; Zhang C; Yang H; Zhang Q Dalton Trans; 2018 Feb; 47(7):2368-2375. PubMed ID: 29372916 [TBL] [Abstract][Full Text] [Related]
37. An electrochemical capacitor electrode based on porous carbon spheres hybrided with polyaniline and nanoscale ruthenium oxide. Zhao D; Guo X; Gao Y; Gao F ACS Appl Mater Interfaces; 2012 Oct; 4(10):5583-9. PubMed ID: 22988980 [TBL] [Abstract][Full Text] [Related]
38. Facile Processing of Free-Standing Polyaniline/SWCNT Film as an Integrated Electrode for Flexible Supercapacitor Application. Liu F; Luo S; Liu D; Chen W; Huang Y; Dong L; Wang L ACS Appl Mater Interfaces; 2017 Oct; 9(39):33791-33801. PubMed ID: 28884579 [TBL] [Abstract][Full Text] [Related]
39. Platelet CMK-5 as an excellent mesoporous carbon to enhance the pseudocapacitance of polyaniline. Lei Z; Sun X; Wang H; Liu Z; Zhao XS ACS Appl Mater Interfaces; 2013 Aug; 5(15):7501-8. PubMed ID: 23848251 [TBL] [Abstract][Full Text] [Related]
40. Polyaniline-intercalated molybdenum oxide nanocomposites: simultaneous synthesis and their enhanced application for supercapacitor. Zheng L; Xu Y; Jin D; Xie Y Chem Asian J; 2011 Jun; 6(6):1505-14. PubMed ID: 21557481 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]