These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
502 related articles for article (PubMed ID: 23517224)
41. 3 D Network-Structured Crumpled Graphene/Carbon Nanotube/Polyaniline Composites for Supercapacitors. Jo EH; Jang HD; Chang H; Kim SK; Choi JH; Lee CM ChemSusChem; 2017 May; 10(10):2210-2217. PubMed ID: 28383820 [TBL] [Abstract][Full Text] [Related]
42. Graphene Modified Polyaniline-Hydrogel Based Stretchable Supercapacitor with High Capacitance and Excellent Stretching Stability. Chen W; Jiang S; Xiao H; Zhou X; Xu X; Yang J; Siddique AH; Liu Z ChemSusChem; 2021 Feb; 14(3):938-945. PubMed ID: 33245211 [TBL] [Abstract][Full Text] [Related]
43. Incorporating nanoporous polyaniline into layer-by-layer ionic liquid-carbon nanotube-graphene paper: towards freestanding flexible electrodes with improved supercapacitive performance. Sun Y; Fang Z; Wang C; Zhou A; Duan H Nanotechnology; 2015 Sep; 26(37):374002. PubMed ID: 26314327 [TBL] [Abstract][Full Text] [Related]
44. Highly flexible binder-free core-shell nanofibrous electrode for lightweight electrochemical energy storage using recycled water bottles. Shi HH; Naguib HE Nanotechnology; 2016 Aug; 27(32):325402. PubMed ID: 27354434 [TBL] [Abstract][Full Text] [Related]
45. Polyaniline nanowire array encapsulated in titania nanotubes as a superior electrode for supercapacitors. Xie K; Li J; Lai Y; Zhang Z; Liu Y; Zhang G; Huang H Nanoscale; 2011 May; 3(5):2202-7. PubMed ID: 21455534 [TBL] [Abstract][Full Text] [Related]
46. Molecular-level uniform graphene/polyaniline composite film for flexible supercapacitors with high-areal capacitance. Wang P; Shao F; Li B; Su Y; Yang Z; Hu N; Zhang Y Nanotechnology; 2023 Feb; 34(17):. PubMed ID: 36689767 [TBL] [Abstract][Full Text] [Related]
47. Polyaniline Nanotubes/Carbon Cloth Composite Electrode by Thermal Acid Doping for High-Performance Supercapacitors. Hui J; Wei D; Chen J; Yang Z Polymers (Basel); 2019 Dec; 11(12):. PubMed ID: 31835655 [TBL] [Abstract][Full Text] [Related]
48. Free-standing reduced graphene oxide/carboxymethylcellulose-polyaniline (RGO/CMC-PANI) hybrid film electrode for high-performance asymmetric supercapacitor device. Xu H; Lei Z; Xu M; Zhu J; Song X; Jin X Int J Biol Macromol; 2023 May; 236():123934. PubMed ID: 36894062 [TBL] [Abstract][Full Text] [Related]
49. Controllable in situ synthesis of epsilon manganese dioxide hollow structure/RGO nanocomposites for high-performance supercapacitors. Lin M; Chen B; Wu X; Qian J; Fei L; Lu W; Chan LW; Yuan J Nanoscale; 2016 Jan; 8(4):1854-60. PubMed ID: 26726127 [TBL] [Abstract][Full Text] [Related]
50. In Situ Growth of the Ni Liu X; Wang J; Yang G ACS Appl Mater Interfaces; 2018 Jun; 10(24):20688-20695. PubMed ID: 29807419 [TBL] [Abstract][Full Text] [Related]
51. Millerite Core-Nitrogen-Doped Carbon Hollow Shell Structure for Electrochemical Energy Storage. Tiruneh SN; Kang BK; Choi HW; Kwon SB; Kim MS; Yoon DH Small; 2018 Oct; 14(41):e1802933. PubMed ID: 30216668 [TBL] [Abstract][Full Text] [Related]
52. Achieving Ultrahigh Cycling Stability and Extended Potential Window for Supercapacitors through Asymmetric Combination of Conductive Polymer Nanocomposite and Activated Carbon. Gul H; Shah AA; Bilal S Polymers (Basel); 2019 Oct; 11(10):. PubMed ID: 31615090 [TBL] [Abstract][Full Text] [Related]
53. Synthesis of a highly efficient 3D graphene-CNT-MnO Asif M; Tan Y; Pan L; Rashad M; Li J; Fu X; Cui R Phys Chem Chem Phys; 2016 Sep; 18(38):26854-26864. PubMed ID: 27711692 [TBL] [Abstract][Full Text] [Related]
54. Preparation of an amide group-connected graphene-polyaniline nanofiber hybrid and its application in supercapacitors. Jianhua L; Junwei A; Yecheng Z; Yuxiao M; Mengliu L; Mei Y; Songmei L ACS Appl Mater Interfaces; 2012 Jun; 4(6):2870-6. PubMed ID: 22642410 [TBL] [Abstract][Full Text] [Related]
55. An Advanced NiCoFeO/Polyaniline Composite for High-Performance Supercapacitors. Hu X; Liu L; Zeng HY; Xu S; Cao X; Cao XJ Chem Asian J; 2019 Apr; 14(7):977-985. PubMed ID: 30672654 [TBL] [Abstract][Full Text] [Related]
56. Design of polypyrrole/polyaniline double-walled nanotube arrays for electrochemical energy storage. Wang ZL; He XJ; Ye SH; Tong YX; Li GR ACS Appl Mater Interfaces; 2014 Jan; 6(1):642-7. PubMed ID: 24313311 [TBL] [Abstract][Full Text] [Related]
57. Polyaniline-Modified Oriented Graphene Hydrogel Film as the Free-Standing Electrode for Flexible Solid-State Supercapacitors. Du P; Liu HC; Yi C; Wang K; Gong X ACS Appl Mater Interfaces; 2015 Nov; 7(43):23932-40. PubMed ID: 26461080 [TBL] [Abstract][Full Text] [Related]
58. Graphene-patched CNT/MnO2 nanocomposite papers for the electrode of high-performance flexible asymmetric supercapacitors. Jin Y; Chen H; Chen M; Liu N; Li Q ACS Appl Mater Interfaces; 2013 Apr; 5(8):3408-16. PubMed ID: 23488813 [TBL] [Abstract][Full Text] [Related]
59. Investigation of Hybrid Electrodes of Polyaniline and Reduced Graphene Oxide with Bio-Waste-Derived Activated Carbon for Supercapacitor Applications. Benchikh I; Ezzat AO; Sabantina L; Benmimoun Y; Benyoucef A Polymers (Basel); 2024 Feb; 16(3):. PubMed ID: 38337310 [TBL] [Abstract][Full Text] [Related]
60. High-Performance Flexible Solid-State Carbon Cloth Supercapacitors Based on Highly Processible N-Graphene Doped Polyacrylic Acid/Polyaniline Composites. Wang Y; Tang S; Vongehr S; Syed JA; Wang X; Meng X Sci Rep; 2016 Feb; 6():12883. PubMed ID: 26883179 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]