These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
502 related articles for article (PubMed ID: 23517224)
61. Facile synthesis of core-shell nanostructured hollow carbon nanospheres@nickel cobalt double hydroxides as high-performance electrode materials for supercapacitors. Xu J; Ma C; Cao J; Chen Z Dalton Trans; 2017 Mar; 46(10):3276-3283. PubMed ID: 28224147 [TBL] [Abstract][Full Text] [Related]
62. Microwave-assisted chemical-vapor-induced in situ polymerization of polyaniline nanofibers on graphite electrode for high-performance supercapacitor. Li X; Yang L; Lei Y; Gu L; Xiao D ACS Appl Mater Interfaces; 2014 Nov; 6(22):19978-89. PubMed ID: 25361469 [TBL] [Abstract][Full Text] [Related]
63. Novel pyrolyzed polyaniline-grafted silicon nanoparticles encapsulated in graphene sheets as Li-ion battery anodes. Li ZF; Zhang H; Liu Q; Liu Y; Stanciu L; Xie J ACS Appl Mater Interfaces; 2014 Apr; 6(8):5996-6002. PubMed ID: 24703375 [TBL] [Abstract][Full Text] [Related]
64. Hybrid hydrogels of porous graphene and nickel hydroxide as advanced supercapacitor materials. Chen S; Duan J; Tang Y; Zhang Qiao S Chemistry; 2013 May; 19(22):7118-24. PubMed ID: 23553792 [TBL] [Abstract][Full Text] [Related]
65. Supercapacitive Properties of 3D-Arrayed Polyaniline Hollow Nanospheres Encaging RuO Kwon H; Hong D; Ryu I; Yim S ACS Appl Mater Interfaces; 2017 Mar; 9(8):7412-7423. PubMed ID: 28169526 [TBL] [Abstract][Full Text] [Related]
66. Hollow Bowl NiS Guo Y; Chang J; Hu L; Lu Y; Yao S; Su X; Zhang X; Zhang H; Feng J ChemSusChem; 2024 Feb; 17(3):e202301148. PubMed ID: 37814172 [TBL] [Abstract][Full Text] [Related]
67. Three-dimensional design and fabrication of reduced graphene oxide/polyaniline composite hydrogel electrodes for high performance electrochemical supercapacitors. Ates M; El-Kady M; Kaner RB Nanotechnology; 2018 Apr; 29(17):175402. PubMed ID: 29424710 [TBL] [Abstract][Full Text] [Related]
68. Nanoporous Hollow Carbon Spheres Derived from Fullerene Assembly as Electrode Materials for High-Performance Supercapacitors. Shrestha LK; Wei Z; Subramaniam G; Shrestha RG; Singh R; Sathish M; Ma R; Hill JP; Nakamura J; Ariga K Nanomaterials (Basel); 2023 Mar; 13(5):. PubMed ID: 36903824 [TBL] [Abstract][Full Text] [Related]
69. An environmentally sustainable ultrasonic-assisted exfoliation approach to graphene and its nanocompositing with polyaniline for supercapacitor applications. A P C; Vattapparambil Chandran S; Narayanan BN Ultrasonics; 2025 Jan; 145():107482. PubMed ID: 39378773 [TBL] [Abstract][Full Text] [Related]
70. Flexible core/shelled PPy@PANI nanotube porous films for hybrid supercapacitors. Zhang G; Zhang J; Li W; Wang J; Li X Nanotechnology; 2021 Nov; 33(6):. PubMed ID: 34700312 [TBL] [Abstract][Full Text] [Related]
71. Supercapacitor electrodes based on layered tungsten disulfide-reduced graphene oxide hybrids synthesized by a facile hydrothermal method. Ratha S; Rout CS ACS Appl Mater Interfaces; 2013 Nov; 5(21):11427-33. PubMed ID: 24125029 [TBL] [Abstract][Full Text] [Related]
72. Generation of B-doped graphene nanoplatelets using a solution process and their supercapacitor applications. Han J; Zhang LL; Lee S; Oh J; Lee KS; Potts JR; Ji J; Zhao X; Ruoff RS; Park S ACS Nano; 2013 Jan; 7(1):19-26. PubMed ID: 23244292 [TBL] [Abstract][Full Text] [Related]
73. Novel three-dimensional polyaniline nanothorns vertically grown on buckypaper as high-performance supercapacitor electrode. Wang X; Wei H; Liu X; Du W; Zhao X; Wang X Nanotechnology; 2019 Aug; 30(32):325401. PubMed ID: 30939463 [TBL] [Abstract][Full Text] [Related]
74. Facial preparation of covalent modified reduced graphene oxide/polyaniline composite and its stable-enhanced electrochemical performance. Wang Y; Wang Y; Wang Y; Liu J Heliyon; 2023 Jan; 9(1):e13002. PubMed ID: 36820179 [TBL] [Abstract][Full Text] [Related]
75. Robust electrodes based on coaxial TiC/C-MnO2 core/shell nanofiber arrays with excellent cycling stability for high-performance supercapacitors. Zhang X; Peng X; Li W; Li L; Gao B; Wu G; Huo K; Chu PK Small; 2015 Apr; 11(15):1847-56. PubMed ID: 25546735 [TBL] [Abstract][Full Text] [Related]
76. Supercapacitors based on graphene-supported iron nanosheets as negative electrode materials. Long C; Wei T; Yan J; Jiang L; Fan Z ACS Nano; 2013 Dec; 7(12):11325-32. PubMed ID: 24245580 [TBL] [Abstract][Full Text] [Related]
77. High-performance supercapacitors using graphene/polyaniline composites deposited on kitchen sponge. Moussa M; El-Kady MF; Wang H; Michimore A; Zhou Q; Xu J; Majeswki P; Ma J Nanotechnology; 2015 Feb; 26(7):075702. PubMed ID: 25619167 [TBL] [Abstract][Full Text] [Related]
78. Hierarchical PANI/NiCo-LDH Core-Shell Composite Networks on Carbon Cloth for High Performance Asymmetric Supercapacitor. Ge X; He Y; Plachy T; Kazantseva N; Saha P; Cheng Q Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 30987112 [TBL] [Abstract][Full Text] [Related]
79. Facile strategy of hollow polyaniline nanotubes supported on Ti Wu W; Wang C; Zhao C; Wei D; Zhu J; Xu Y J Colloid Interface Sci; 2020 Nov; 580():601-613. PubMed ID: 32711208 [TBL] [Abstract][Full Text] [Related]
80. Flexible Supercapacitors Based on Polyaniline Arrays Coated Graphene Aerogel Electrodes. Yang Y; Xi Y; Li J; Wei G; Klyui NI; Han W Nanoscale Res Lett; 2017 Dec; 12(1):394. PubMed ID: 28599513 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]