These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 23517459)

  • 1. Quantitative particle microscopy in self-metered fluids.
    White LV; Cooke IR; Wakes SJ; Sowerby SJ
    J Microsc; 2013 Jun; 250(3):159-65. PubMed ID: 23517459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An axisymmetric meniscus converges particles for microscopy.
    Sowerby SJ; Mirams GJ; Hill PC; Paulin MG
    J Microsc; 2011 Dec; 244(3):230-4. PubMed ID: 21801178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Comparison between bright field and phase-contrast image analysis techniques in activated sludge morphological characterization.
    Mesquita DP; Dias O; Amaral AL; Ferreira EC
    Microsc Microanal; 2010 Apr; 16(2):166-74. PubMed ID: 20100385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Authentication of bee pollen grains in bright-field microscopy by combining one-class classification techniques and image processing.
    Chica M
    Microsc Res Tech; 2012 Nov; 75(11):1475-85. PubMed ID: 22736501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic particle detection in microscopy using temporal correlations.
    Röding M; Deschout H; Martens T; Notelaers K; Hofkens J; Ameloot M; Braeckmans K; Särkkä A; Rudemo M
    Microsc Res Tech; 2013 Oct; 76(10):997-1006. PubMed ID: 23857566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of pollen grains in multifocal optical microscopy images of air samples.
    Landsmeer SH; Hendriks EA; de Weger LA; Reiber JH; Stoel BC
    Microsc Res Tech; 2009 Jun; 72(6):424-30. PubMed ID: 19165737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated morphological analysis of cells in body fluids by the digital microscopy system DM96.
    Riedl JA; Dinkelaar RB; van Gelder W
    J Clin Pathol; 2010 Jun; 63(6):538-43. PubMed ID: 20498027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of rice pollen grains by multispectral imaging microscopy.
    Hu Y; Wu Q; Liu S; Wei L; Chen X; Yan Z; Yu J; Zeng L; Ding Y
    Microsc Res Tech; 2005 Dec; 68(6):335-46. PubMed ID: 16358284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mathematical form factor studies on the effect of water on airborne particles morphology using a bi-dimensional TEM image processing.
    Cucchiella R; Falini G; Ferri M; Stracquadanio M; Trombini C
    J Environ Monit; 2009 Jan; 11(1):181-6. PubMed ID: 19137155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Image analysis: basic procedures for description of plant structures.
    Albrechtová J; Kubínová Z; Soukup A; Janáček J
    Methods Mol Biol; 2014; 1080():67-76. PubMed ID: 24132419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro micronucleus assay for the analysis of total particulate matter in cigarette smoke: comparison of flow cytometry and laser scanning cytometry with microscopy.
    Yao J; Gao Q; Mi Q; Li X; Miao M; Cheng P; Luo Y
    Mutat Res; 2013 Aug; 755(2):120-5. PubMed ID: 23770001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An image skeletonization-based tool for pollen tube morphology analysis and phenotyping.
    Wang C; Gui CP; Liu HK; Zhang D; Mosig A
    J Integr Plant Biol; 2013 Feb; 55(2):131-41. PubMed ID: 23116178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Particulate matter characterization by gray level co-occurrence matrix based support vector machines.
    Manivannan K; Aggarwal P; Devabhaktuni V; Kumar A; Nims D; Bhattacharya P
    J Hazard Mater; 2012 Jul; 223-224():94-103. PubMed ID: 22595545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MicrobeTracker: quantitative image analysis designed for the smallest organisms.
    Garner EC
    Mol Microbiol; 2011 May; 80(3):577-9. PubMed ID: 21504490
    [No Abstract]   [Full Text] [Related]  

  • 15. A new approach to simulate characterization of particulate matter employing support vector machines.
    Mogireddy K; Devabhaktuni V; Kumar A; Aggarwal P; Bhattacharya P
    J Hazard Mater; 2011 Feb; 186(2-3):1254-62. PubMed ID: 21185646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classification of pollen species using autofluorescence image analysis.
    Mitsumoto K; Yabusaki K; Aoyagi H
    J Biosci Bioeng; 2009 Jan; 107(1):90-4. PubMed ID: 19147117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From microbes to numbers: extracting meaningful quantities from images.
    Zimmer C
    Cell Microbiol; 2012 Dec; 14(12):1828-35. PubMed ID: 22985180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Image division technique in pre-acquisition analysis of information content for automated microscopy.
    Brázdilová SL; Kozubek M
    J Microsc; 2011 Jun; 242(3):279-89. PubMed ID: 21118253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sub-viral imaging of vaccinia virus using super-resolution microscopy.
    Horsington J; Turnbull L; Whitchurch CB; Newsome TP
    J Virol Methods; 2012 Dec; 186(1-2):132-6. PubMed ID: 22776111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DetecTiff: a novel image analysis routine for high-content screening microscopy.
    Gilbert DF; Meinhof T; Pepperkok R; Runz H
    J Biomol Screen; 2009 Sep; 14(8):944-55. PubMed ID: 19641223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.