These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 23517493)

  • 1. Multivariate analysis of adaptive capacity for upper thermal limits in Drosophila simulans.
    van Heerwaarden B; Sgrò CM
    J Evol Biol; 2013 Apr; 26(4):800-9. PubMed ID: 23517493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary capacity of upper thermal limits: beyond single trait assessments.
    Blackburn S; van Heerwaarden B; Kellermann V; Sgrò CM
    J Exp Biol; 2014 Jun; 217(Pt 11):1918-24. PubMed ID: 24625644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complex patterns of local adaptation in heat tolerance in Drosophila simulans from eastern Australia.
    van Heerwaarden B; Lee RF; Wegener B; Weeks AR; Sgró CM
    J Evol Biol; 2012 Sep; 25(9):1765-78. PubMed ID: 22775577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increases in the evolutionary potential of upper thermal limits under warmer temperatures in two rainforest Drosophila species.
    van Heerwaarden B; Malmberg M; Sgrò CM
    Evolution; 2016 Feb; 70(2):456-64. PubMed ID: 26703976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comprehensive assessment of geographic variation in heat tolerance and hardening capacity in populations of Drosophila melanogaster from eastern Australia.
    Sgrò CM; Overgaard J; Kristensen TN; Mitchell KA; Cockerell FE; Hoffmann AA
    J Evol Biol; 2010 Nov; 23(11):2484-93. PubMed ID: 20874849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multivariate test of evolutionary constraints for thermal tolerance in Drosophila melanogaster.
    Williams BR; VAN Heerwaarden B; Dowling DK; Sgrò CM
    J Evol Biol; 2012 Jul; 25(7):1415-26. PubMed ID: 22587877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitivity to thermal extremes in Australian Drosophila implies similar impacts of climate change on the distribution of widespread and tropical species.
    Overgaard J; Kearney MR; Hoffmann AA
    Glob Chang Biol; 2014 Jun; 20(6):1738-50. PubMed ID: 24549716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ecologically relevant measures of tolerance to potentially lethal temperatures.
    Terblanche JS; Hoffmann AA; Mitchell KA; Rako L; le Roux PC; Chown SL
    J Exp Biol; 2011 Nov; 214(Pt 22):3713-25. PubMed ID: 22031735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolutionary potential of thermal preference and heat tolerance in Drosophila subobscura.
    Castañeda LE; Romero-Soriano V; Mesas A; Roff DA; Santos M
    J Evol Biol; 2019 Aug; 32(8):818-824. PubMed ID: 31038253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental evolution on heat tolerance and thermal performance curves under contrasting thermal selection in Drosophila subobscura.
    Mesas A; Jaramillo A; Castañeda LE
    J Evol Biol; 2021 May; 34(5):767-778. PubMed ID: 33662149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular damage as induced by high temperature is dependent on rate of temperature change - investigating consequences of ramping rates on molecular and organismal phenotypes in Drosophila melanogaster.
    Sørensen JG; Loeschcke V; Kristensen TN
    J Exp Biol; 2013 Mar; 216(Pt 5):809-14. PubMed ID: 23155086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. No patterns in thermal plasticity along a latitudinal gradient in Drosophila simulans from eastern Australia.
    van Heerwaarden B; Lee RF; Overgaard J; Sgrò CM
    J Evol Biol; 2014 Nov; 27(11):2541-53. PubMed ID: 25262984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological climatic limits in Drosophila: patterns and implications.
    Hoffmann AA
    J Exp Biol; 2010 Mar; 213(6):870-80. PubMed ID: 20190112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparative analysis of the upper thermal tolerance limits of eastern Pacific porcelain crabs, genus Petrolisthes: influences of latitude, vertical zonation, acclimation, and phylogeny.
    Stillman JH; Somero GN
    Physiol Biochem Zool; 2000; 73(2):200-8. PubMed ID: 10801398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heat tolerance in Drosophila subobscura along a latitudinal gradient: Contrasting patterns between plastic and genetic responses.
    Castañeda LE; Rezende EL; Santos M
    Evolution; 2015 Oct; 69(10):2721-34. PubMed ID: 26292981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Latitudinal clines in heat tolerance, protein synthesis rate and transcript level of a candidate gene in Drosophila melanogaster.
    Cockerell FE; Sgrò CM; McKechnie SW
    J Insect Physiol; 2014 Jan; 60():136-44. PubMed ID: 24333150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plastic and evolutionary responses to heat stress in a temperate dung fly: negative correlation between basal and induced heat tolerance?
    Esperk T; Kjaersgaard A; Walters RJ; Berger D; Blanckenhorn WU
    J Evol Biol; 2016 May; 29(5):900-15. PubMed ID: 26801318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Basal cold but not heat tolerance constrains plasticity among Drosophila species (Diptera: Drosophilidae).
    Nyamukondiwa C; Terblanche JS; Marshall KE; Sinclair BJ
    J Evol Biol; 2011 Sep; 24(9):1927-38. PubMed ID: 21658189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The importance of physiological limits in determining biogeographical range shifts due to global climate change: the heat-shock response.
    Tomanek L
    Physiol Biochem Zool; 2008; 81(6):709-17. PubMed ID: 18844483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine 'winners' and 'losers'.
    Somero GN
    J Exp Biol; 2010 Mar; 213(6):912-20. PubMed ID: 20190116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.