These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
549 related articles for article (PubMed ID: 23517589)
1. Encapsulation and 3D culture of human adipose-derived stem cells in an in-situ crosslinked hybrid hydrogel composed of PEG-based hyperbranched copolymer and hyaluronic acid. Hassan W; Dong Y; Wang W Stem Cell Res Ther; 2013 Mar; 4(2):32. PubMed ID: 23517589 [TBL] [Abstract][Full Text] [Related]
2. Heparin-hyaluronic acid hydrogel in support of cellular activities of 3D encapsulated adipose derived stem cells. Gwon K; Kim E; Tae G Acta Biomater; 2017 Feb; 49():284-295. PubMed ID: 27919839 [TBL] [Abstract][Full Text] [Related]
3. A hybrid injectable hydrogel from hyperbranched PEG macromer as a stem cell delivery and retention platform for diabetic wound healing. Xu Q; A S; Gao Y; Guo L; Creagh-Flynn J; Zhou D; Greiser U; Dong Y; Wang F; Tai H; Liu W; Wang W; Wang W Acta Biomater; 2018 Jul; 75():63-74. PubMed ID: 29803782 [TBL] [Abstract][Full Text] [Related]
4. Thermoresponsive hyperbranched copolymer with multi acrylate functionality for in situ cross-linkable hyaluronic acid composite semi-IPN hydrogel. Dong Y; Hassan W; Zheng Y; Saeed AO; Cao H; Tai H; Pandit A; Wang W J Mater Sci Mater Med; 2012 Jan; 23(1):25-35. PubMed ID: 22143908 [TBL] [Abstract][Full Text] [Related]
5. Performance of an in situ formed bioactive hydrogel dressing from a PEG-based hyperbranched multifunctional copolymer. Dong Y; Hassan WU; Kennedy R; Greiser U; Pandit A; Garcia Y; Wang W Acta Biomater; 2014 May; 10(5):2076-85. PubMed ID: 24389319 [TBL] [Abstract][Full Text] [Related]
6. Conformable hyaluronic acid hydrogel delivers adipose-derived stem cells and promotes regeneration of burn injury. Dong Y; Cui M; Qu J; Wang X; Kwon SH; Barrera J; Elvassore N; Gurtner GC Acta Biomater; 2020 May; 108():56-66. PubMed ID: 32251786 [TBL] [Abstract][Full Text] [Related]
7. Poly(ethylene glycol)-Based Hyperbranched Polymer from RAFT and Its Application as a Silver-Sulfadiazine-Loaded Antibacterial Hydrogel in Wound Care. McMahon S; Kennedy R; Duffy P; Vasquez JM; Wall JG; Tai H; Wang W ACS Appl Mater Interfaces; 2016 Oct; 8(40):26648-26656. PubMed ID: 27636330 [TBL] [Abstract][Full Text] [Related]
8. Development of a UV crosslinked biodegradable hydrogel containing adipose derived stem cells to promote vascularization for skin wounds and tissue engineering. Eke G; Mangir N; Hasirci N; MacNeil S; Hasirci V Biomaterials; 2017 Jun; 129():188-198. PubMed ID: 28343005 [TBL] [Abstract][Full Text] [Related]
9. Layer-shaped alginate hydrogels enhance the biological performance of human adipose-derived stem cells. Galateanu B; Dimonie D; Vasile E; Nae S; Cimpean A; Costache M BMC Biotechnol; 2012 Jun; 12():35. PubMed ID: 22748201 [TBL] [Abstract][Full Text] [Related]
10. A double-network poly(Nɛ-acryloyl L-lysine)/hyaluronic acid hydrogel as a mimic of the breast tumor microenvironment. Xu W; Qian J; Zhang Y; Suo A; Cui N; Wang J; Yao Y; Wang H Acta Biomater; 2016 Mar; 33():131-41. PubMed ID: 26805429 [TBL] [Abstract][Full Text] [Related]
12. 3D Culture Facilitates VEGF-Stimulated Endothelial Differentiation of Adipose-Derived Stem Cells. Suresh V; West JL Ann Biomed Eng; 2020 Mar; 48(3):1034-1044. PubMed ID: 31165294 [TBL] [Abstract][Full Text] [Related]
13. Catechol-Functionalized Hyaluronic Acid Hydrogels Enhance Angiogenesis and Osteogenesis of Human Adipose-Derived Stem Cells in Critical Tissue Defects. Park HJ; Jin Y; Shin J; Yang K; Lee C; Yang HS; Cho SW Biomacromolecules; 2016 Jun; 17(6):1939-48. PubMed ID: 27112904 [TBL] [Abstract][Full Text] [Related]
14. Screening of hyaluronic acid-poly(ethylene glycol) composite hydrogels to support intervertebral disc cell biosynthesis using artificial neural network analysis. Jeong CG; Francisco AT; Niu Z; Mancino RL; Craig SL; Setton LA Acta Biomater; 2014 Aug; 10(8):3421-30. PubMed ID: 24859415 [TBL] [Abstract][Full Text] [Related]
15. Vasquez JM; Idrees A; Carmagnola I; Sigen A; McMahon S; Marlinghaus L; Ciardelli G; Greiser U; Tai H; Wang W; Salber J; Chiono V Front Bioeng Biotechnol; 2021; 9():742135. PubMed ID: 34869257 [TBL] [Abstract][Full Text] [Related]
16. Poly(ethylene glycol) diacrylate/hyaluronic acid semi-interpenetrating network compositions for 3-D cell spreading and migration. Lee HJ; Sen A; Bae S; Lee JS; Webb K Acta Biomater; 2015 Mar; 14():43-52. PubMed ID: 25523876 [TBL] [Abstract][Full Text] [Related]
17. Hyperbranched PEGmethacrylate linear pDMAEMA block copolymer as an efficient non-viral gene delivery vector. Mathew A; Cao H; Collin E; Wang W; Pandit A Int J Pharm; 2012 Sep; 434(1-2):99-105. PubMed ID: 22664462 [TBL] [Abstract][Full Text] [Related]
18. Hierarchically designed agarose and poly(ethylene glycol) interpenetrating network hydrogels for cartilage tissue engineering. DeKosky BJ; Dormer NH; Ingavle GC; Roatch CH; Lomakin J; Detamore MS; Gehrke SH Tissue Eng Part C Methods; 2010 Dec; 16(6):1533-42. PubMed ID: 20626274 [TBL] [Abstract][Full Text] [Related]
19. Instant Gelation System as Self-Healable and Printable 3D Cell Culture Bioink Based on Dynamic Covalent Chemistry. A S; Lyu J; Johnson M; Creagh-Flynn J; Zhou D; Lara-Sáez I; Xu Q; Tai H; Wang W ACS Appl Mater Interfaces; 2020 Sep; 12(35):38918-38924. PubMed ID: 32805952 [TBL] [Abstract][Full Text] [Related]
20. Zwitterionic starch-based hydrogel for the expansion and "stemness" maintenance of brown adipose derived stem cells. Dong D; Hao T; Wang C; Zhang Y; Qin Z; Yang B; Fang W; Ye L; Yao F; Li J Biomaterials; 2018 Mar; 157():149-160. PubMed ID: 29272722 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]