These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 23517775)

  • 1. Eliminating adhesion errors in nanoindentation of compliant polymers and hydrogels.
    Kohn JC; Ebenstein DM
    J Mech Behav Biomed Mater; 2013 Apr; 20():316-26. PubMed ID: 23517775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface detection errors cause overestimation of the modulus in nanoindentation on soft materials.
    Kaufman JD; Klapperich CM
    J Mech Behav Biomed Mater; 2009 Aug; 2(4):312-7. PubMed ID: 19627837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanomechanical measurements of polyethylene glycol hydrogels using atomic force microscopy.
    Drira Z; Yadavalli VK
    J Mech Behav Biomed Mater; 2013 Feb; 18():20-8. PubMed ID: 23237877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical characterization of oligo(ethylene glycol)-based hydrogels by dynamic nanoindentation experiments.
    Guglielmi PO; Herbert EG; Tartivel L; Behl M; Lendlein A; Huber N; Lilleodden ET
    J Mech Behav Biomed Mater; 2015 Jun; 46():1-10. PubMed ID: 25746930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oscillating adhesive contacts between micron-scale tips and compliant polymers.
    Wahl KJ; Asif SA; Greenwood JA; Johnson KL
    J Colloid Interface Sci; 2006 Apr; 296(1):178-88. PubMed ID: 16168427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogels based on poly(ethylene oxide) and poly(tetramethylene oxide) or poly(dimethyl siloxane). III. In vivo biocompatibility and biostability.
    Hyung Park J; Bae YH
    J Biomed Mater Res A; 2003 Feb; 64(2):309-19. PubMed ID: 12522818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A methodological framework for nanomechanical characterization of soft biomaterials and polymers.
    Arevalo SE; Ebenstein DM; Pruitt LA
    J Mech Behav Biomed Mater; 2022 Oct; 134():105384. PubMed ID: 35961240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of mechanical testing methods for biomaterials: Pipette aspiration, nanoindentation, and macroscale testing.
    Buffinton CM; Tong KJ; Blaho RA; Buffinton EM; Ebenstein DM
    J Mech Behav Biomed Mater; 2015 Nov; 51():367-79. PubMed ID: 26295450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatially resolved frequency-dependent elasticity measured with pulsed force microscopy and nanoindentation.
    Sweers KK; van der Werf KO; Bennink ML; Subramaniam V
    Nanoscale; 2012 Mar; 4(6):2072-7. PubMed ID: 22331128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of JKR-based methods to analyze quasi-static and dynamic indentation force curves.
    Ebenstein DM; Wahl KJ
    J Colloid Interface Sci; 2006 Jun; 298(2):652-62. PubMed ID: 16455101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. "Contact" of nanoscale stiff films.
    Yang FK; Zhang W; Han Y; Yoffe S; Cho Y; Zhao B
    Langmuir; 2012 Jun; 28(25):9562-72. PubMed ID: 22616836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication and characterization of ophthalmically compatible hydrogels composed of poly(dimethyl siloxane-urethane)/Pluronic F127.
    Lin CH; Lin WC; Yang MC
    Colloids Surf B Biointerfaces; 2009 Jun; 71(1):36-44. PubMed ID: 19188049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reliable measurement of elastic modulus of cells by nanoindentation in an atomic force microscope.
    Zhou ZL; Ngan AH; Tang B; Wang AX
    J Mech Behav Biomed Mater; 2012 Apr; 8():134-42. PubMed ID: 22402160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fiber reinforced poroelastic model of nanoindentation of porcine costal cartilage: a combined experimental and finite element approach.
    Gupta S; Lin J; Ashby P; Pruitt L
    J Mech Behav Biomed Mater; 2009 Aug; 2(4):326-37; discussion 337-8. PubMed ID: 19627839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling of surface nanoparticle inclusions for nanomechanical measurements by an AFM or nanoindenter: spatial issues.
    Clifford CA; Seah MP
    Nanotechnology; 2012 Apr; 23(16):165704. PubMed ID: 22469815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly(dimethyl siloxane) surface modification by low pressure plasma to improve its characteristics towards biomedical applications.
    Pinto S; Alves P; Matos CM; Santos AC; Rodrigues LR; Teixeira JA; Gil MH
    Colloids Surf B Biointerfaces; 2010 Nov; 81(1):20-6. PubMed ID: 20638249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A method for measuring linearly viscoelastic properties of human tympanic membrane using nanoindentation.
    Huang G; Daphalapurkar NP; Gan RZ; Lu H
    J Biomech Eng; 2008 Feb; 130(1):014501. PubMed ID: 18298192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the adhesion properties of inorganic materials with high surface energies.
    Cho JH; Lee DH; Lim JA; Cho K; Je JH; Yi JM
    Langmuir; 2004 Nov; 20(23):10174-8. PubMed ID: 15518510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adhesion behavior of peritoneal cells on the surface of self-assembled triblock copolymer hydrogels.
    Tanaka S; Ogura A; Kaneko T; Murata Y; Akashi M
    Biomacromolecules; 2004; 5(6):2447-55. PubMed ID: 15530062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cryogel micromechanics unraveled by atomic force microscopy-based nanoindentation.
    Welzel PB; Friedrichs J; Grimmer M; Vogler S; Freudenberg U; Werner C
    Adv Healthc Mater; 2014 Nov; 3(11):1849-53. PubMed ID: 24729299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.