These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
344 related articles for article (PubMed ID: 23517904)
1. Phosphorus plays an important role in enhancing biodiesel productivity of Chlorella vulgaris under nitrogen deficiency. Chu FF; Chu PN; Cai PJ; Li WW; Lam PK; Zeng RJ Bioresour Technol; 2013 Apr; 134():341-6. PubMed ID: 23517904 [TBL] [Abstract][Full Text] [Related]
2. Effect of phosphorus on biodiesel production from Scenedesmus obliquus under nitrogen-deficiency stress. Chu FF; Chu PN; Shen XF; Lam PK; Zeng RJ Bioresour Technol; 2014; 152():241-6. PubMed ID: 24292204 [TBL] [Abstract][Full Text] [Related]
3. Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implications for biofuels. Yeh KL; Chang JS Biotechnol J; 2011 Nov; 6(11):1358-66. PubMed ID: 21381209 [TBL] [Abstract][Full Text] [Related]
4. Polyphosphate during the Regreening of Chlorella vulgaris under Nitrogen Deficiency. Chu FF; Shen XF; Lam PK; Zeng RJ Int J Mol Sci; 2015 Sep; 16(10):23355-68. PubMed ID: 26426008 [TBL] [Abstract][Full Text] [Related]
5. Biosynthesis of high yield fatty acids from Chlorella vulgaris NIES-227 under nitrogen starvation stress during heterotrophic cultivation. Shen XF; Chu FF; Lam PK; Zeng RJ Water Res; 2015 Sep; 81():294-300. PubMed ID: 26081436 [TBL] [Abstract][Full Text] [Related]
6. Effect of CO₂ supply conditions on lipid production of Chlorella vulgaris from enzymatic hydrolysates of lipid-extracted microalgal biomass residues. Zheng H; Gao Z; Yin F; Ji X; Huang H Bioresour Technol; 2012 Dec; 126():24-30. PubMed ID: 23073086 [TBL] [Abstract][Full Text] [Related]
7. Maximization of cell growth and lipid production of freshwater microalga Chlorella vulgaris by enrichment technique for biodiesel production. Wong YK; Ho YH; Ho KC; Leung HM; Yung KK Environ Sci Pollut Res Int; 2017 Apr; 24(10):9089-9101. PubMed ID: 27975198 [TBL] [Abstract][Full Text] [Related]
8. Optimization of the biomass production of oil algae Chlorella minutissima UTEX2341. Li Z; Yuan H; Yang J; Li B Bioresour Technol; 2011 Oct; 102(19):9128-34. PubMed ID: 21803576 [TBL] [Abstract][Full Text] [Related]
9. Cultivation, characterization, and properties of Chlorella vulgaris microalgae with different lipid contents and effect on fast pyrolysis oil composition. Adamakis ID; Lazaridis PA; Terzopoulou E; Torofias S; Valari M; Kalaitzi P; Rousonikolos V; Gkoutzikostas D; Zouboulis A; Zalidis G; Triantafyllidis KS Environ Sci Pollut Res Int; 2018 Aug; 25(23):23018-23032. PubMed ID: 29859001 [TBL] [Abstract][Full Text] [Related]
10. Cell Growth, Lipid Production and Productivity in Photosynthetic Microalga Chlorella vulgaris under Different Nitrogen Concentrations and Culture Media Replacement. Morowvat MH; Ghasemi Y Recent Pat Food Nutr Agric; 2018; 9(2):142-151. PubMed ID: 29886843 [TBL] [Abstract][Full Text] [Related]
11. Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Liu ZY; Wang GC; Zhou BC Bioresour Technol; 2008 Jul; 99(11):4717-22. PubMed ID: 17993270 [TBL] [Abstract][Full Text] [Related]
12. Effect of nitrogen and phosphorus concentration on their removal kinetic in treated urban wastewater by Chlorella vulgaris. Ruiz J; Alvarez P; Arbib Z; Garrido C; Barragán J; Perales JA Int J Phytoremediation; 2011 Oct; 13(9):884-96. PubMed ID: 21972511 [TBL] [Abstract][Full Text] [Related]
13. The effect of nitrogen limitation on lipid productivity and cell composition in Chlorella vulgaris. Griffiths MJ; van Hille RP; Harrison ST Appl Microbiol Biotechnol; 2014 Mar; 98(5):2345-56. PubMed ID: 24413971 [TBL] [Abstract][Full Text] [Related]
14. Lipid production by Chlorella vulgaris after a shift from nutrient-rich to nitrogen starvation conditions. Mujtaba G; Choi W; Lee CG; Lee K Bioresour Technol; 2012 Nov; 123():279-83. PubMed ID: 22940330 [TBL] [Abstract][Full Text] [Related]
15. Potential biomass yield per phosphorus and lipid accumulation property of seven microalgal species. Wu YH; Yu Y; Hu HY Bioresour Technol; 2013 Feb; 130():599-602. PubMed ID: 23334016 [TBL] [Abstract][Full Text] [Related]
16. Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Yeh KL; Chang JS Bioresour Technol; 2012 Feb; 105():120-7. PubMed ID: 22189073 [TBL] [Abstract][Full Text] [Related]
17. Lipid production of Chlorella vulgaris from lipid-extracted microalgal biomass residues through two-step enzymatic hydrolysis. Zheng H; Gao Z; Yin F; Ji X; Huang H Bioresour Technol; 2012 Aug; 117():1-6. PubMed ID: 22609706 [TBL] [Abstract][Full Text] [Related]
18. Outdoor cultivation of the green microalga Chlorella vulgaris under stress conditions as a feedstock for biofuel. El-Sheekh MM; Gheda SF; El-Sayed AEB; Abo Shady AM; El-Sheikh ME; Schagerl M Environ Sci Pollut Res Int; 2019 Jun; 26(18):18520-18532. PubMed ID: 31049862 [TBL] [Abstract][Full Text] [Related]
19. Use of orange peel extract for mixotrophic cultivation of Chlorella vulgaris: increased production of biomass and FAMEs. Park WK; Moon M; Kwak MS; Jeon S; Choi GG; Yang JW; Lee B Bioresour Technol; 2014 Nov; 171():343-9. PubMed ID: 25218207 [TBL] [Abstract][Full Text] [Related]
20. Treatment of drainage solution from hydroponic greenhouse production with microalgae. Hultberg M; Carlsson AS; Gustafsson S Bioresour Technol; 2013 May; 136():401-6. PubMed ID: 23567708 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]