BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 23518074)

  • 1. The macroscopic structure of RADA16 peptide hydrogel stimulates monocyte/macrophage differentiation in HL60 cells via cholesterol synthesis.
    Kakiuchi Y; Hirohashi N; Murakami-Murofushi K
    Biochem Biophys Res Commun; 2013 Apr; 433(3):298-304. PubMed ID: 23518074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological evaluation of human degenerated nucleus pulposus cells in functionalized self-assembling peptide nanofiber hydrogel scaffold.
    Tao H; Zhang Y; Wang CF; Zhang C; Wang XM; Wang DL; Bai XD; Wen TY; Xin HK; Wu JH; Liu Y; He Q; Ruan D
    Tissue Eng Part A; 2014 Jun; 20(11-12):1621-31. PubMed ID: 24450796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Skin Regeneration with a Scaffold of Predefined Shape and Bioactive Peptide Hydrogels.
    Im H; Kim SH; Kim SH; Jung Y
    Tissue Eng Part A; 2018 Oct; 24(19-20):1518-1530. PubMed ID: 29756539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FGL-functionalized self-assembling nanofiber hydrogel as a scaffold for spinal cord-derived neural stem cells.
    Wang J; Zheng J; Zheng Q; Wu Y; Wu B; Huang S; Fang W; Guo X
    Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():140-7. PubMed ID: 25491970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo studies on angiogenic activity of two designer self-assembling peptide scaffold hydrogels in the chicken embryo chorioallantoic membrane.
    Liu X; Wang X; Horii A; Wang X; Qiao L; Zhang S; Cui FZ
    Nanoscale; 2012 Apr; 4(8):2720-7. PubMed ID: 22430460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural stem cells encapsulated in a functionalized self-assembling peptide hydrogel for brain tissue engineering.
    Cheng TY; Chen MH; Chang WH; Huang MY; Wang TW
    Biomaterials; 2013 Mar; 34(8):2005-16. PubMed ID: 23237515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of a RADA16-based self-assembling peptide nanofiber scaffold for biomedical applications.
    Wang R; Wang Z; Guo Y; Li H; Chen Z
    J Biomater Sci Polym Ed; 2019; 30(9):713-736. PubMed ID: 31018781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CD44(+)/CD24(-) breast cancer cells exhibit phenotypic reversion in three-dimensional self-assembling peptide RADA16 nanofiber scaffold.
    Mi K; Xing Z
    Int J Nanomedicine; 2015; 10():3043-53. PubMed ID: 25945050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functionalized self-assembling peptide nanofiber hydrogel as a scaffold for rabbit nucleus pulposus cells.
    Wang B; Wu Y; Shao Z; Yang S; Che B; Sun C; Ma Z; Zhang Y
    J Biomed Mater Res A; 2012 Mar; 100(3):646-53. PubMed ID: 22213420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembling peptides with hBMP7 biological activity promote the differentiation of ADSCs into nucleus pulposus-like cells.
    Wang C; Li Z; Zhang K; Zhang C
    J Orthop Surg Res; 2022 Apr; 17(1):197. PubMed ID: 35366936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designer bFGF-incorporated d-form self-assembly peptide nanofiber scaffolds to promote bone repair.
    He B; Ou Y; Chen S; Zhao W; Zhou A; Zhao J; Li H; Jiang D; Zhu Y
    Mater Sci Eng C Mater Biol Appl; 2017 May; 74():451-458. PubMed ID: 28254316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled release of TGF-beta 1 from RADA self-assembling peptide hydrogel scaffolds.
    Zhou A; Chen S; He B; Zhao W; Chen X; Jiang D
    Drug Des Devel Ther; 2016; 10():3043-3051. PubMed ID: 27703332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of aminopeptidase-N (CD13) and Fc epsilon RIIb (CD23) expression by IL-4 depends on the stage of maturation of monocytes/macrophages.
    Van Hal PT; Hopstaken-Broos JP; Wijkhuijs JM; Te Velde AA; Figdor CG; Hoogsteden HC
    J Immunol; 1992 Aug; 149(4):1395-401. PubMed ID: 1380041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differentiation of monocytes on a degradable, polar, hydrophobic, ionic polyurethane: Two-dimensional films vs. three-dimensional scaffolds.
    McBane JE; Ebadi D; Sharifpoor S; Labow RS; Santerre JP
    Acta Biomater; 2011 Jan; 7(1):115-22. PubMed ID: 20728587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Slow and sustained release of active cytokines from self-assembling peptide scaffolds.
    Gelain F; Unsworth LD; Zhang S
    J Control Release; 2010 Aug; 145(3):231-9. PubMed ID: 20447427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficacy of self-assembled hydrogels composed of positively or negatively charged peptides as scaffolds for cell culture.
    Nagayasu A; Yokoi H; Minaguchi JA; Hosaka YZ; Ueda H; Takehana K
    J Biomater Appl; 2012 Feb; 26(6):651-65. PubMed ID: 21123284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A 3D model of ovarian cancer cell lines on peptide nanofiber scaffold to explore the cell-scaffold interaction and chemotherapeutic resistance of anticancer drugs.
    Yang Z; Zhao X
    Int J Nanomedicine; 2011; 6():303-10. PubMed ID: 21383855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designer self-assembling hydrogel scaffolds can impact skin cell proliferation and migration.
    Bradshaw M; Ho D; Fear MW; Gelain F; Wood FM; Iyer KS
    Sci Rep; 2014 Nov; 4():6903. PubMed ID: 25384420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Effect of RADA16-I and CDNF on Neurogenesis and Neuroprotection in Brain Ischemia-Reperfusion Injury.
    Liu X; Ren H; Peng A; Cheng H; Chen J; Xia X; Liu T; Wang X
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembly-peptide hydrogels as tissue-engineering scaffolds for three-dimensional culture of chondrocytes in vitro.
    Liu J; Song H; Zhang L; Xu H; Zhao X
    Macromol Biosci; 2010 Oct; 10(10):1164-70. PubMed ID: 20552605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.