BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 23518227)

  • 1. Improved axonal regeneration after spinal cord injury in mice with conditional deletion of ephrin B2 under the GFAP promoter.
    Ren Z; Chen X; Yang J; Kress BT; Tong J; Liu H; Takano T; Zhao Y; Nedergaard M
    Neuroscience; 2013 Jun; 241():89-99. PubMed ID: 23518227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EphA4 Obstructs Spinal Cord Neuron Regeneration by Promoting Excessive Activation of Astrocytes.
    Chen X; Zhang L; Hua F; Zhuang Y; Liu H; Wang S
    Cell Mol Neurobiol; 2022 Jul; 42(5):1557-1568. PubMed ID: 33595805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNAi-mediated ephrin-B2 silencing attenuates astroglial-fibrotic scar formation and improves spinal cord axon growth.
    Li Y; Chen Y; Tan L; Pan JY; Lin WW; Wu J; Hu W; Chen X; Wang XD
    CNS Neurosci Ther; 2017 Oct; 23(10):779-789. PubMed ID: 28834283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GDNF modifies reactive astrogliosis allowing robust axonal regeneration through Schwann cell-seeded guidance channels after spinal cord injury.
    Deng LX; Hu J; Liu N; Wang X; Smith GM; Wen X; Xu XM
    Exp Neurol; 2011 Jun; 229(2):238-50. PubMed ID: 21316362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ephrin-B2 and EphB2 regulation of astrocyte-meningeal fibroblast interactions in response to spinal cord lesions in adult rats.
    Bundesen LQ; Scheel TA; Bregman BS; Kromer LF
    J Neurosci; 2003 Aug; 23(21):7789-800. PubMed ID: 12944508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Upregulation of EphA3 receptor after spinal cord injury.
    Irizarry-Ramírez M; Willson CA; Cruz-Orengo L; Figueroa J; Velázquez I; Jones H; Foster RD; Whittemore SR; Miranda JD
    J Neurotrauma; 2005 Aug; 22(8):929-35. PubMed ID: 16083359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gliosis after traumatic brain injury in conditional ephrinB2-knockout mice.
    Liu L; Chen XL; Yang JK; Ren ZG; Wang S
    Chin Med J (Engl); 2012 Nov; 125(21):3831-5. PubMed ID: 23106883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lentiviral-mediated silencing of glial fibrillary acidic protein and vimentin promotes anatomical plasticity and functional recovery after spinal cord injury.
    Desclaux M; Perrin FE; Do-Thi A; Prieto-Cappellini M; Gimenez Y Ribotta M; Mallet J; Privat A
    J Neurosci Res; 2015 Jan; 93(1):43-55. PubMed ID: 25131829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accumulation of the inhibitory receptor EphA4 may prevent regeneration of corticospinal tract axons following lesion.
    Fabes J; Anderson P; Yáñez-Muñoz RJ; Thrasher A; Brennan C; Bolsover S
    Eur J Neurosci; 2006 Apr; 23(7):1721-30. PubMed ID: 16623828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glial scar and axonal regeneration in the CNS: lessons from GFAP and vimentin transgenic mice.
    Ribotta MG; Menet V; Privat A
    Acta Neurochir Suppl; 2004; 89():87-92. PubMed ID: 15335106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effects of cyclin dependent protein kinase inhibitor olomoucine on the microenvironment of axonal regeneration after spinal cord injury: an experiment with rats].
    Tian DS; Wang W; Xu YL; Yu ZY; Xie MJ; Wang P; Zhang GB
    Zhonghua Yi Xue Za Zhi; 2006 Apr; 86(13):901-5. PubMed ID: 16759516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Astroglial-derived periostin promotes axonal regeneration after spinal cord injury.
    Shih CH; Lacagnina M; Leuer-Bisciotti K; Pröschel C
    J Neurosci; 2014 Feb; 34(7):2438-43. PubMed ID: 24523534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SARM1 promotes neuroinflammation and inhibits neural regeneration after spinal cord injury through NF-κB signaling.
    Liu H; Zhang J; Xu X; Lu S; Yang D; Xie C; Jia M; Zhang W; Jin L; Wang X; Shen X; Li F; Wang W; Bao X; Li S; Zhu M; Wang W; Wang Y; Huang Z; Teng H
    Theranostics; 2021; 11(9):4187-4206. PubMed ID: 33754056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Axonal and nonneuronal cell responses to spinal cord injury in mice lacking glial fibrillary acidic protein.
    Wang X; Messing A; David S
    Exp Neurol; 1997 Dec; 148(2):568-76. PubMed ID: 9417833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toll-like receptor 9 antagonism modulates astrocyte function and preserves proximal axons following spinal cord injury.
    Li L; Ni L; Eugenin EA; Heary RF; Elkabes S
    Brain Behav Immun; 2019 Aug; 80():328-343. PubMed ID: 30953770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel compound, denosomin, ameliorates spinal cord injury via axonal growth associated with astrocyte-secreted vimentin.
    Teshigawara K; Kuboyama T; Shigyo M; Nagata A; Sugimoto K; Matsuya Y; Tohda C
    Br J Pharmacol; 2013 Feb; 168(4):903-19. PubMed ID: 22978525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction of Eph B3 after spinal cord injury.
    Miranda JD; White LA; Marcillo AE; Willson CA; Jagid J; Whittemore SR
    Exp Neurol; 1999 Mar; 156(1):218-22. PubMed ID: 10192794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EphA4 deficient mice maintain astroglial-fibrotic scar formation after spinal cord injury.
    Herrmann JE; Shah RR; Chan AF; Zheng B
    Exp Neurol; 2010 Jun; 223(2):582-98. PubMed ID: 20170651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effect of chondroitinase ABC on axonal myelination and glial scar after spinal cord injury in rats].
    Zhang T; Shen Y; Lu L; Fan Z; Huo W
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Feb; 27(2):145-50. PubMed ID: 23596678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histone H1 improves regeneration after mouse spinal cord injury and changes shape and gene expression of cultured astrocytes.
    Kleene R; Loers G; Jakovcevski I; Mishra B; Schachner M
    Restor Neurol Neurosci; 2019; 37(4):291-313. PubMed ID: 31227672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.