BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 23519316)

  • 1. Nocturnal light environments influence color vision and signatures of selection on the OPN1SW opsin gene in nocturnal lemurs.
    Veilleux CC; Louis EE; Bolnick DA
    Mol Biol Evol; 2013 Jun; 30(6):1420-37. PubMed ID: 23519316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signatures of functional constraint at aye-aye opsin genes: the potential of adaptive color vision in a nocturnal primate.
    Perry GH; Martin RD; Verrelli BC
    Mol Biol Evol; 2007 Sep; 24(9):1963-70. PubMed ID: 17575304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ancestral loss of short wave-sensitive cone visual pigment in lorisiform prosimians, contrasting with its strict conservation in other prosimians.
    Kawamura S; Kubotera N
    J Mol Evol; 2004 Mar; 58(3):314-21. PubMed ID: 15045486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular evolution of bat color vision genes.
    Wang D; Oakley T; Mower J; Shimmin LC; Yim S; Honeycutt RL; Tsao H; Li WH
    Mol Biol Evol; 2004 Feb; 21(2):295-302. PubMed ID: 14660703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional preservation and variation in the cone opsin genes of nocturnal tarsiers.
    Moritz GL; Ong PS; Perry GH; Dominy NJ
    Philos Trans R Soc Lond B Biol Sci; 2017 Apr; 372(1717):. PubMed ID: 28193820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Euarchontan Opsin Variation Brings New Focus to Primate Origins.
    Melin AD; Wells K; Moritz GL; Kistler L; Orkin JD; Timm RM; Bernard H; Lakim MB; Perry GH; Kawamura S; Dominy NJ
    Mol Biol Evol; 2016 Apr; 33(4):1029-41. PubMed ID: 26739880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Considering the Influence of Nonadaptive Evolution on Primate Color Vision.
    Jacobs RL; Bradley BJ
    PLoS One; 2016; 11(3):e0149664. PubMed ID: 26959829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The evolution of color vision in nocturnal mammals.
    Zhao H; Rossiter SJ; Teeling EC; Li C; Cotton JA; Zhang S
    Proc Natl Acad Sci U S A; 2009 Jun; 106(22):8980-5. PubMed ID: 19470491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive molecular evolution in the opsin genes of rapidly speciating cichlid species.
    Spady TC; Seehausen O; Loew ER; Jordan RC; Kocher TD; Carleton KL
    Mol Biol Evol; 2005 Jun; 22(6):1412-22. PubMed ID: 15772376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Daily activity patterns influence retinal morphology, signatures of selection, and spectral tuning of opsin genes in colubrid snakes.
    Hauzman E; Bonci DMO; Suárez-Villota EY; Neitz M; Ventura DF
    BMC Evol Biol; 2017 Dec; 17(1):249. PubMed ID: 29228925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Losses of functional opsin genes, short-wavelength cone photopigments, and color vision--a significant trend in the evolution of mammalian vision.
    Jacobs GH
    Vis Neurosci; 2013 Mar; 30(1-2):39-53. PubMed ID: 23286388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colour vision variation in leaf-nosed bats (Phyllostomidae): Links to cave roosting and dietary specialization.
    Kries K; Barros MAS; Duytschaever G; Orkin JD; Janiak MC; Pessoa DMA; Melin AD
    Mol Ecol; 2018 Sep; 27(18):3627-3640. PubMed ID: 30059176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nocturnal light environments and species ecology: implications for nocturnal color vision in forests.
    Veilleux CC; Cummings ME
    J Exp Biol; 2012 Dec; 215(Pt 23):4085-96. PubMed ID: 22899522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutational changes in S-cone opsin genes common to both nocturnal and cathemeral Aotus monkeys.
    Levenson DH; Fernandez-Duque E; Evans S; Jacobs GH
    Am J Primatol; 2007 Jul; 69(7):757-65. PubMed ID: 17253622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diurnality and cone photopigment polymorphism in strepsirrhines: examination of linkage in Lemur catta.
    Jacobs GH; Deegan JF
    Am J Phys Anthropol; 2003 Sep; 122(1):66-72. PubMed ID: 12923905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contrasting modes of evolution of the visual pigments in Heliconius butterflies.
    Yuan F; Bernard GD; Le J; Briscoe AD
    Mol Biol Evol; 2010 Oct; 27(10):2392-405. PubMed ID: 20478921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A two-step method for identifying photopigment opsin and
    Atilano SR; Kenney MC; Briscoe AD; Jameson KA
    Mol Vis; 2020; 26():158-172. PubMed ID: 32180681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Archelosaurian Color Vision, Parietal Eye Loss, and the Crocodylian Nocturnal Bottleneck.
    Emerling CA
    Mol Biol Evol; 2017 Mar; 34(3):666-676. PubMed ID: 27940498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Different selective pressures shape the molecular evolution of color vision in chimpanzee and human populations.
    Verrelli BC; Lewis CM; Stone AC; Perry GH
    Mol Biol Evol; 2008 Dec; 25(12):2735-43. PubMed ID: 18832077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An explicit signature of balancing selection for color-vision variation in new world monkeys.
    Hiwatashi T; Okabe Y; Tsutsui T; Hiramatsu C; Melin AD; Oota H; Schaffner CM; Aureli F; Fedigan LM; Innan H; Kawamura S
    Mol Biol Evol; 2010 Feb; 27(2):453-64. PubMed ID: 19861643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.