These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 23519407)

  • 1. Structural insights into the role of Bacillus subtilis YwfH (BacG) in tetrahydrotyrosine synthesis.
    Rajavel M; Perinbam K; Gopal B
    Acta Crystallogr D Biol Crystallogr; 2013 Mar; 69(Pt 3):324-32. PubMed ID: 23519407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of anticapsin biosynthesis reveals a four-enzyme pathway to tetrahydrotyrosine in Bacillus subtilis.
    Mahlstedt SA; Walsh CT
    Biochemistry; 2010 Feb; 49(5):912-23. PubMed ID: 20052993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structures of trans-2-enoyl-CoA reductases from Clostridium acetobutylicum and Treponema denticola: insights into the substrate specificity and the catalytic mechanism.
    Hu K; Zhao M; Zhang T; Zha M; Zhong C; Jiang Y; Ding J
    Biochem J; 2013 Jan; 449(1):79-89. PubMed ID: 23050861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stereochemical outcome at four stereogenic centers during conversion of prephenate to tetrahydrotyrosine by BacABGF in the bacilysin pathway.
    Parker JB; Walsh CT
    Biochemistry; 2012 Jul; 51(28):5622-32. PubMed ID: 22765234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and biochemical characterization of an atypical short-chain dehydrogenase/reductase reveals an unusual cofactor preference.
    Buysschaert G; Verstraete K; Savvides SN; Vergauwen B
    FEBS J; 2013 Mar; 280(5):1358-70. PubMed ID: 23311896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structures of Enoyl-ACP reductases I (FabI) and III (FabL) from B. subtilis.
    Kim KH; Ha BH; Kim SJ; Hong SK; Hwang KY; Kim EE
    J Mol Biol; 2011 Feb; 406(3):403-15. PubMed ID: 21185310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structures of Trypanosoma cruzi dihydroorotate dehydrogenase complexed with substrates and products: atomic resolution insights into mechanisms of dihydroorotate oxidation and fumarate reduction.
    Inaoka DK; Sakamoto K; Shimizu H; Shiba T; Kurisu G; Nara T; Aoki T; Kita K; Harada S
    Biochemistry; 2008 Oct; 47(41):10881-91. PubMed ID: 18808149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural enzymological studies of 2-enoyl thioester reductase of the human mitochondrial FAS II pathway: new insights into its substrate recognition properties.
    Chen ZJ; Pudas R; Sharma S; Smart OS; Juffer AH; Hiltunen JK; Wierenga RK; Haapalainen AM
    J Mol Biol; 2008 Jun; 379(4):830-44. PubMed ID: 18479707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of dihydroorotate dehydrogenase from Leishmania major.
    Cordeiro AT; Feliciano PR; Pinheiro MP; Nonato MC
    Biochimie; 2012 Aug; 94(8):1739-48. PubMed ID: 22542640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystallographic studies on the binding of isonicotinyl-NAD adduct to wild-type and isoniazid resistant 2-trans-enoyl-ACP (CoA) reductase from Mycobacterium tuberculosis.
    Dias MV; Vasconcelos IB; Prado AM; Fadel V; Basso LA; de Azevedo WF; Santos DS
    J Struct Biol; 2007 Sep; 159(3):369-80. PubMed ID: 17588773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of isoflavone reductase from alfalfa (Medicago sativa L.).
    Wang X; He X; Lin J; Shao H; Chang Z; Dixon RA
    J Mol Biol; 2006 May; 358(5):1341-52. PubMed ID: 16600295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NADH oxidase activity of Bacillus subtilis nitroreductase NfrA1: insight into its biological role.
    Cortial S; Chaignon P; Iorga BI; Aymerich S; Truan G; Gueguen-Chaignon V; Meyer P; Moréra S; Ouazzani J
    FEBS Lett; 2010 Sep; 584(18):3916-22. PubMed ID: 20727352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural insights into the catalytic mechanism of Bacillus subtilis BacF.
    Deshmukh A; Gopal B
    Acta Crystallogr F Struct Biol Commun; 2020 Mar; 76(Pt 3):145-151. PubMed ID: 32134000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate-induced conformational changes in Bacillus subtilis glutamate racemase and their implications for drug discovery.
    Ruzheinikov SN; Taal MA; Sedelnikova SE; Baker PJ; Rice DW
    Structure; 2005 Nov; 13(11):1707-13. PubMed ID: 16271894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and functional investigation of AerF, a NADPH-dependent alkenal double bond reductase participating in the biosynthesis of Choi moiety of aeruginosin.
    Qiu X; Wei Y; Zhu W; Fu J; Duan X; Jin H; Zhu P; Zhou C; Yan X
    J Struct Biol; 2020 Jan; 209(1):107415. PubMed ID: 31726097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A unique catalytic triad revealed by the crystal structure of APE0912, a short-chain dehydrogenase/reductase family protein from Aeropyrum pernix K1.
    Yamamura A; Ichimura T; Mimoto F; Ohtsuka J; Miyazono K; Okai M; Kamo M; Lee WC; Nagata K; Tanokura M
    Proteins; 2008 Mar; 70(4):1640-5. PubMed ID: 18175326
    [No Abstract]   [Full Text] [Related]  

  • 17. The X-ray structure of Escherichia coli enoyl reductase with bound NAD+ at 2.1 A resolution.
    Baldock C; Rafferty JB; Stuitje AR; Slabas AR; Rice DW
    J Mol Biol; 1998 Dec; 284(5):1529-46. PubMed ID: 9878369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and catalytic diversity in the two family 11 aldo-keto reductases.
    Ehrensberger AH; Wilson DK
    J Mol Biol; 2004 Mar; 337(3):661-73. PubMed ID: 15019785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational changes in an ultrafast light-driven enzyme determine catalytic activity.
    Sytina OA; Heyes DJ; Hunter CN; Alexandre MT; van Stokkum IH; van Grondelle R; Groot ML
    Nature; 2008 Dec; 456(7224):1001-4. PubMed ID: 19092933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structures of human glutaryl-CoA dehydrogenase with and without an alternate substrate: structural bases of dehydrogenation and decarboxylation reactions.
    Fu Z; Wang M; Paschke R; Rao KS; Frerman FE; Kim JJ
    Biochemistry; 2004 Aug; 43(30):9674-84. PubMed ID: 15274622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.