These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 23519442)

  • 1. Emergent dynamics in a model of visual cortex.
    Rangan AV; Young LS
    J Comput Neurosci; 2013 Oct; 35(2):155-67. PubMed ID: 23519442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mechanism of orientation selectivity in primary visual cortex without a functional map.
    Hansel D; van Vreeswijk C
    J Neurosci; 2012 Mar; 32(12):4049-64. PubMed ID: 22442071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rhythm and Synchrony in a Cortical Network Model.
    Chariker L; Shapley R; Young LS
    J Neurosci; 2018 Oct; 38(40):8621-8634. PubMed ID: 30120205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of spiking neurons: between homogeneity and synchrony.
    Rangan AV; Young LS
    J Comput Neurosci; 2013 Jun; 34(3):433-60. PubMed ID: 23096934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Attentional modulation of firing rate and synchrony in a model cortical network.
    Buia C; Tiesinga P
    J Comput Neurosci; 2006 Jun; 20(3):247-64. PubMed ID: 16683206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Orientation selectivity of synaptic input to neurons in mouse and cat primary visual cortex.
    Tan AY; Brown BD; Scholl B; Mohanty D; Priebe NJ
    J Neurosci; 2011 Aug; 31(34):12339-50. PubMed ID: 21865476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of highly distinctive structural properties on the excitability of pyramidal neurons in monkey visual and prefrontal cortices.
    Amatrudo JM; Weaver CM; Crimins JL; Hof PR; Rosene DL; Luebke JI
    J Neurosci; 2012 Oct; 32(40):13644-60. PubMed ID: 23035077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A spiking neuron model for binocular rivalry.
    Laing CR; Chow CC
    J Comput Neurosci; 2002; 12(1):39-53. PubMed ID: 11932559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibitory interneurons decorrelate excitatory cells to drive sparse code formation in a spiking model of V1.
    King PD; Zylberberg J; DeWeese MR
    J Neurosci; 2013 Mar; 33(13):5475-85. PubMed ID: 23536063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Statistical comparison of spike responses to natural stimuli in monkey area V1 with simulated responses of a detailed laminar network model for a patch of V1.
    Rasch MJ; Schuch K; Logothetis NK; Maass W
    J Neurophysiol; 2011 Feb; 105(2):757-78. PubMed ID: 21106898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orientation tuning and synchronization in the hypercolumn model.
    Lee SG; Tanaka S; Kim S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 1):011914. PubMed ID: 14995654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gamma oscillations mediate stimulus competition and attentional selection in a cortical network model.
    Börgers C; Epstein S; Kopell NJ
    Proc Natl Acad Sci U S A; 2008 Nov; 105(46):18023-8. PubMed ID: 19004759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-Cell Membrane Potential Fluctuations Evince Network Scale-Freeness and Quasicriticality.
    Johnson JK; Wright NC; Xià J; Wessel R
    J Neurosci; 2019 Jun; 39(24):4738-4759. PubMed ID: 30952810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of visual responsiveness by spontaneous local network activity in vivo.
    Haider B; Duque A; Hasenstaub AR; Yu Y; McCormick DA
    J Neurophysiol; 2007 Jun; 97(6):4186-202. PubMed ID: 17409168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms underlying contrast-dependent orientation selectivity in mouse V1.
    Dai WP; Zhou D; McLaughlin DW; Cai D
    Proc Natl Acad Sci U S A; 2018 Nov; 115(45):11619-11624. PubMed ID: 30337480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dimensional reduction of a V1 ring model with simple and complex cells.
    Wang C; Tao L
    J Comput Neurosci; 2014 Dec; 37(3):481-92. PubMed ID: 25064183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A coarse-grained framework for spiking neuronal networks: between homogeneity and synchrony.
    Zhang J; Zhou D; Cai D; Rangan AV
    J Comput Neurosci; 2014 Aug; 37(1):81-104. PubMed ID: 24338105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Propagation of orientation selectivity in a spiking network model of layered primary visual cortex.
    Merkt B; Schüßler F; Rotter S
    PLoS Comput Biol; 2019 Jul; 15(7):e1007080. PubMed ID: 31323031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response facilitation from the "suppressive" receptive field surround of macaque V1 neurons.
    Ichida JM; Schwabe L; Bressloff PC; Angelucci A
    J Neurophysiol; 2007 Oct; 98(4):2168-81. PubMed ID: 17686908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Postnatal development of intrinsic and synaptic properties transforms signaling in the layer 5 excitatory neural network of the visual cortex.
    Etherington SJ; Williams SR
    J Neurosci; 2011 Jun; 31(26):9526-37. PubMed ID: 21715617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.