These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 23519693)

  • 1. Flexizyme-mediated genetic reprogramming as a tool for noncanonical peptide synthesis and drug discovery.
    Passioura T; Suga H
    Chemistry; 2013 May; 19(21):6530-6. PubMed ID: 23519693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery of Functional Macrocyclic Peptides by Means of the RaPID System.
    Tsiamantas C; Otero-Ramirez ME; Suga H
    Methods Mol Biol; 2019; 2001():299-315. PubMed ID: 31134577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Messenger RNA-programmed incorporation of multiple N-methyl-amino acids into linear and cyclic peptides.
    Kawakami T; Murakami H; Suga H
    Chem Biol; 2008 Jan; 15(1):32-42. PubMed ID: 18215771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexizyme as a versatile tRNA acylation catalyst and the application for translation.
    Murakami H; Ohta A; Goto Y; Sako Y; Suga H
    Nucleic Acids Symp Ser (Oxf); 2006; (50):35-6. PubMed ID: 17150804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A RaPID way to discover nonstandard macrocyclic peptide modulators of drug targets.
    Passioura T; Suga H
    Chem Commun (Camb); 2017 Feb; 53(12):1931-1940. PubMed ID: 28091672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Charging of tRNAs using ribozymes and selection of cyclic peptides containing thioethers.
    Reid PC; Goto Y; Katoh T; Suga H
    Methods Mol Biol; 2012; 805():335-48. PubMed ID: 22094815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ribosomal synthesis of peptides with C-terminal lactams, thiolactones, and alkylamides.
    Nakajima E; Goto Y; Sako Y; Murakami H; Suga H
    Chembiochem; 2009 May; 10(7):1186-92. PubMed ID: 19370739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A convenient method for synthesis of cyclic peptide libraries.
    Bourne GT; Nielson JL; Coughlan JF; Darwen P; Campitelli MR; Horton DA; Rhümann A; Love SG; Tran TT; Smythe ML
    Methods Mol Biol; 2005; 298():151-65. PubMed ID: 16044546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexizyme-Enabled Benchtop Biosynthesis of Thiopeptides.
    Fleming SR; Bartges TE; Vinogradov AA; Kirkpatrick CL; Goto Y; Suga H; Hicks LM; Bowers AA
    J Am Chem Soc; 2019 Jan; 141(2):758-762. PubMed ID: 30602112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peptide Display Technologies.
    Pitt A; Nims Z
    Methods Mol Biol; 2019; 2001():285-298. PubMed ID: 31134576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The flexizyme system: a highly flexible tRNA aminoacylation tool for the translation apparatus.
    Ohuchi M; Murakami H; Suga H
    Curr Opin Chem Biol; 2007 Oct; 11(5):537-42. PubMed ID: 17884697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploration of incorporation of Nalpha-methylated amino acids into peptides by sense-suppression method.
    Kawakami T; Murakami H; Suga H
    Nucleic Acids Symp Ser (Oxf); 2007; (51):361-2. PubMed ID: 18029736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diverse backbone-cyclized peptides via codon reprogramming.
    Kawakami T; Ohta A; Ohuchi M; Ashigai H; Murakami H; Suga H
    Nat Chem Biol; 2009 Dec; 5(12):888-90. PubMed ID: 19915537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reprogramming the translation initiation for the synthesis of physiologically stable cyclic peptides.
    Goto Y; Ohta A; Sako Y; Yamagishi Y; Murakami H; Suga H
    ACS Chem Biol; 2008 Feb; 3(2):120-9. PubMed ID: 18215017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovering functional, non-proteinogenic amino acid containing, peptides using genetic code reprogramming.
    Rogers JM; Suga H
    Org Biomol Chem; 2015 Sep; 13(36):9353-63. PubMed ID: 26280393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extensive reprogramming of the genetic code for genetically encoded synthesis of highly N-alkylated polycyclic peptidomimetics.
    Kawakami T; Ishizawa T; Murakami H
    J Am Chem Soc; 2013 Aug; 135(33):12297-304. PubMed ID: 23899321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A flexizyme that selectively charges amino acids activated by a water-friendly leaving group.
    Niwa N; Yamagishi Y; Murakami H; Suga H
    Bioorg Med Chem Lett; 2009 Jul; 19(14):3892-4. PubMed ID: 19364647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selection, Addiction and Catalysis: Emerging Trends for the Incorporation of Noncanonical Amino Acids into Peptides and Proteins in Vivo.
    Mayer C
    Chembiochem; 2019 Jun; 20(11):1357-1364. PubMed ID: 30618145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ribosome-mediated incorporation of fluorescent amino acids into peptides in vitro.
    Lee J; Schwarz KJ; Yu H; Krüger A; Anslyn EV; Ellington AD; Moore JS; Jewett MC
    Chem Commun (Camb); 2021 Mar; 57(21):2661-2664. PubMed ID: 33592078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multicyclic Peptides as Scaffolds for the Development of Tumor Targeting Agents.
    Loktev A; Haberkorn U; Mier W
    Curr Med Chem; 2017; 24(20):2141-2155. PubMed ID: 28302013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.