These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 23519820)

  • 1. In vivo modification of a maize engineered minichromosome.
    Gaeta RT; Masonbrink RE; Zhao C; Sanyal A; Krishnaswamy L; Birchler JA
    Chromosoma; 2013 Jun; 122(3):221-32. PubMed ID: 23519820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plant engineered minichromosomes and artificial chromosome platforms.
    Birchler JA; Yu W; Han F
    Cytogenet Genome Res; 2008; 120(3-4):228-32. PubMed ID: 18504351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineered Minichromosomes in Plants: Structure, Function, and Applications.
    Graham ND; Cody JP; Swyers NC; McCaw ME; Zhao C; Birchler JA
    Int Rev Cell Mol Biol; 2015; 318():63-119. PubMed ID: 26315884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineered minichromosomes in plants.
    Yu W; Han F; Birchler JA
    Curr Opin Biotechnol; 2007 Oct; 18(5):425-31. PubMed ID: 17977710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineered minichromosomes in plants.
    Birchler JA
    Chromosome Res; 2015 Feb; 23(1):77-85. PubMed ID: 25596825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction and behavior of engineered minichromosomes in maize.
    Yu W; Han F; Gao Z; Vega JM; Birchler JA
    Proc Natl Acad Sci U S A; 2007 May; 104(21):8924-9. PubMed ID: 17502617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recovery of a telomere-truncated chromosome via a compensating translocation in maize.
    Gaeta RT; Danilova TV; Zhao C; Masonbrink RE; McCaw ME; Birchler JA
    Genome; 2011 Mar; 54(3):184-95. PubMed ID: 21423281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction of telomere-mediated chromosomal truncation and behavior of truncated chromosomes in Brassica napus.
    Yan X; Li C; Yang J; Wang L; Jiang C; Wei W
    Plant J; 2017 Aug; 91(4):700-713. PubMed ID: 28500683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site-specific transfer of chromosomal segments and genes in wheat engineered chromosomes.
    Yuan J; Shi Q; Guo X; Liu Y; Su H; Guo X; Lv Z; Han F
    J Genet Genomics; 2017 Nov; 44(11):531-539. PubMed ID: 29169922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineered minichromosomes in plants.
    Birchler JA; Swyers NC
    Exp Cell Res; 2020 Mar; 388(2):111852. PubMed ID: 31972219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Cre::FLP fusion protein recombines FRT or loxP sites in transgenic maize plants.
    Djukanovic V; Lenderts B; Bidney D; Lyznik LA
    Plant Biotechnol J; 2008 Oct; 6(8):770-81. PubMed ID: 18627532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic chromosome platforms in plants.
    Gaeta RT; Masonbrink RE; Krishnaswamy L; Zhao C; Birchler JA
    Annu Rev Plant Biol; 2012; 63():307-30. PubMed ID: 22136564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Agrobacterium-mediated transformation of maize (Zea mays) with Cre-lox site specific recombination cassettes in BIBAC vectors.
    Vega JM; Yu W; Han F; Kato A; Peters EM; Zhang ZJ; Birchler JA
    Plant Mol Biol; 2008 Apr; 66(6):587-98. PubMed ID: 18265944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards the development of better crops by genetic transformation using engineered plant chromosomes.
    Dhar MK; Kaul S; Kour J
    Plant Cell Rep; 2011 May; 30(5):799-806. PubMed ID: 21249368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Minichromosome analysis of chromosome pairing, disjunction, and sister chromatid cohesion in maize.
    Han F; Gao Z; Yu W; Birchler JA
    Plant Cell; 2007 Dec; 19(12):3853-63. PubMed ID: 18083907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artificial chromosome formation in maize (Zea mays L.).
    Ananiev EV; Wu C; Chamberlin MA; Svitashev S; Schwartz C; Gordon-Kamm W; Tingey S
    Chromosoma; 2009 Apr; 118(2):157-77. PubMed ID: 19015867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene Stacking in Plants Through the Application of Site-Specific Recombination and Nuclease Activity.
    Srivastava V
    Methods Mol Biol; 2019; 1864():267-277. PubMed ID: 30415342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of Marker-Free Genetically Modified Maize Using a Heat-Inducible Auto-Excision Vector.
    Du D; Jin R; Guo J; Zhang F
    Genes (Basel); 2019 May; 10(5):. PubMed ID: 31108922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cre/lox-mediated marker gene excision in transgenic maize (Zea mays L.) plants.
    Zhang W; Subbarao S; Addae P; Shen A; Armstrong C; Peschke V; Gilbertson L
    Theor Appl Genet; 2003 Nov; 107(7):1157-68. PubMed ID: 14513214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize.
    Han F; Lamb JC; Birchler JA
    Proc Natl Acad Sci U S A; 2006 Feb; 103(9):3238-43. PubMed ID: 16492777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.