These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 23519820)

  • 21. A test for ectopic exchange catalyzed by Cre recombinase in maize.
    Ream TS; Strobel J; Roller B; Auger DL; Kato A; Halbrook C; Peters EM; Theuri J; Bauer MJ; Addae P; Dioh W; Staub JM; Gilbertson LA; Birchler JA
    Theor Appl Genet; 2005 Jul; 111(2):378-85. PubMed ID: 15912343
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stable integration of an engineered megabase repeat array into the maize genome.
    Zhang H; Phan BH; Wang K; Artelt BJ; Jiang J; Parrott WA; Dawe RK
    Plant J; 2012 Apr; 70(2):357-65. PubMed ID: 22233334
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gene stacking in plant cell using recombinases for gene integration and nucleases for marker gene deletion.
    Nandy S; Zhao S; Pathak BP; Manoharan M; Srivastava V
    BMC Biotechnol; 2015 Oct; 15():93. PubMed ID: 26452472
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Single-copy primary transformants of maize obtained through the co-introduction of a recombinase-expressing construct.
    Srivastava V; Ow DW
    Plant Mol Biol; 2001 Jul; 46(5):561-6. PubMed ID: 11516149
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Engineered plant minichromosomes.
    Houben A; Mette MF; Teo CH; Lermontova I; Schubert I
    Int J Dev Biol; 2013; 57(6-8):651-7. PubMed ID: 24166447
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Production of Engineered Minichromosome Vectors via the Introduction of Telomere Sequences.
    Graham N; Swyers N; Cody J; McCaw M; Zhao C; Birchler JA
    Methods Mol Biol; 2016; 1469():1-13. PubMed ID: 27557682
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Telomere truncation in plants.
    Xu C; Yu W
    Methods Mol Biol; 2011; 701():113-30. PubMed ID: 21181527
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Telomere-mediated chromosomal truncation in maize.
    Yu W; Lamb JC; Han F; Birchler JA
    Proc Natl Acad Sci U S A; 2006 Nov; 103(46):17331-6. PubMed ID: 17085598
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Minichromosomes derived from the B chromosome of maize.
    Kato A; Zheng YZ; Auger DL; Phelps-Durr T; Bauer MJ; Lamb JC; Birchler JA
    Cytogenet Genome Res; 2005; 109(1-3):156-65. PubMed ID: 15753572
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Engineered minichromosomes in plants.
    Birchler JA
    Curr Opin Plant Biol; 2014 Jun; 19():76-80. PubMed ID: 24906050
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Meiotic transmission of an in vitro-assembled autonomous maize minichromosome.
    Carlson SR; Rudgers GW; Zieler H; Mach JM; Luo S; Grunden E; Krol C; Copenhaver GP; Preuss D
    PLoS Genet; 2007 Oct; 3(10):1965-74. PubMed ID: 17953486
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sequences associated with A chromosome centromeres are present throughout the maize B chromosome.
    Lamb JC; Kato A; Birchler JA
    Chromosoma; 2005 Feb; 113(7):337-49. PubMed ID: 15586285
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A new location to split Cre recombinase for protein fragment complementation.
    Rajaee M; Ow DW
    Plant Biotechnol J; 2017 Nov; 15(11):1420-1428. PubMed ID: 28317293
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanoparticle-Mediated Recombinase Delivery into Maize.
    Martin-Ortigosa S; Trewyn BG; Wang K
    Methods Mol Biol; 2017; 1642():169-180. PubMed ID: 28815500
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Competitive Expression of Endogenous Wheat CENH3 May Lead to Suppression of Alien ZmCENH3 in Transgenic Wheat × Maize Hybrids.
    Chen W; Zhu Q; Wang H; Xiao J; Xing L; Chen P; Jin W; Wang XE
    J Genet Genomics; 2015 Nov; 42(11):639-649. PubMed ID: 26674381
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Maize centromeres: organization and functional adaptation in the genetic background of oat.
    Jin W; Melo JR; Nagaki K; Talbert PB; Henikoff S; Dawe RK; Jiang J
    Plant Cell; 2004 Mar; 16(3):571-81. PubMed ID: 14973167
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fluorescence in situ hybridization to localize transgenes in plant chromosomes.
    Harwood WA; Bilham LJ; Travella S; Salvo-Garrido H; Snape JW
    Methods Mol Biol; 2005; 286():327-40. PubMed ID: 15310931
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inactivation of a centromere during the formation of a translocation in maize.
    Gao Z; Fu S; Dong Q; Han F; Birchler JA
    Chromosome Res; 2011 Aug; 19(6):755-61. PubMed ID: 21947957
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gene conversion in transgenic maize plants expressing FLP/FRT and Cre/loxP site-specific recombination systems.
    Djukanovic V; Orczyk W; Gao H; Sun X; Garrett N; Zhen S; Gordon-Kamm W; Barton J; Lyznik LA
    Plant Biotechnol J; 2006 May; 4(3):345-57. PubMed ID: 17147640
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A transgenomic cytogenetic sorghum (Sorghum propinquum) bacterial artificial chromosome fluorescence in situ hybridization map of maize (Zea mays L.) pachytene chromosome 9, evidence for regions of genome hyperexpansion.
    Amarillo FI; Bass HW
    Genetics; 2007 Nov; 177(3):1509-26. PubMed ID: 17947405
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.