These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 23519947)

  • 41. Nitrous oxide as a tracer gas in the ASHRAE 110-1995 Standard.
    Burke M; Wong L; Gonzales BA; Knutson G
    J Occup Environ Hyg; 2014; 11(1):32-9. PubMed ID: 24283334
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Decontamination of a technetium contaminated fume hood in a research laboratory.
    O'Dou TJ; Bertoia J; Czerwinski KR
    Health Phys; 2011 Aug; 101 Suppl 2():S124-30. PubMed ID: 21709494
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Estimation of leakage rate of air from a fume hood in a radioisotope laboratory using CFD simulations.
    Kim S; Yang H
    Appl Radiat Isot; 2018 Oct; 140():300-304. PubMed ID: 30099249
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Research on a push-pull industrial trough-side exhaust hood based on CFD simulation and experiment.
    Song Y; Chen X; Zhang Z; Cao S; Du T; Guo H
    Sci Total Environ; 2022 Jun; 827():154265. PubMed ID: 35259371
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Evaluation of the reverse flow around a worker's body produced by a local exhaust hood].
    Ojima J
    Sangyo Eiseigaku Zasshi; 2003 Jul; 45(4):125-32. PubMed ID: 12968498
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Simulation and experimental investigation of dust-collecting performances of different dust exhaust hoods.
    Liu Y; Xia T; Wang Y; Chen J; Li X
    J Air Waste Manag Assoc; 2020 Dec; 70(12):1367-1377. PubMed ID: 32857685
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The effect of thermal loading on laboratory fume hood performance.
    Johnston JD; Chessin SJ; Chesnovar BW; Lillquist DR
    Appl Occup Environ Hyg; 2000 Nov; 15(11):863-8. PubMed ID: 11062932
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Correlation between airflow patterns and performance of a laboratory fume hood.
    Tseng LC; Huang RF; Chen CC; Chang CP
    J Occup Environ Hyg; 2006 Dec; 3(12):694-706. PubMed ID: 17133690
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Development of a push-pull ventilation system to control solder fume.
    Watson SI; Cain JR; Cowie H; Cherrie JW
    Ann Occup Hyg; 2001 Nov; 45(8):669-76. PubMed ID: 11718662
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Tracer gas evaluations of local exhaust hood performance].
    Ojima J
    Sangyo Eiseigaku Zasshi; 2007 Sep; 49(5):209-15. PubMed ID: 17938560
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Reducing employee exposure potential using the ANSI/ASHRAE 110 Method of Testing Performance of Laboratory Fume Hoods as a diagnostic tool.
    Maupins K; Hitchings DT
    Am Ind Hyg Assoc J; 1998 Feb; 59(2):133-8. PubMed ID: 9487667
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Performance assessment of U.S. residential cooking exhaust hoods.
    Delp WW; Singer BC
    Environ Sci Technol; 2012 Jun; 46(11):6167-73. PubMed ID: 22568807
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Aerodynamics and performance verifications of test methods for laboratory fume cupboards.
    Tseng LC; Huang RF; Chen CC; Chang CP
    Ann Occup Hyg; 2007 Mar; 51(2):173-87. PubMed ID: 16921195
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Development and characterization of a wake-controlled exterior hood.
    Huang RF; Liu GS; Lin SY; Chen YK; Wang SC; Peng CY; Yeh WY; Chen CW; Chang CP
    J Occup Environ Hyg; 2004 Dec; 1(12):769-78. PubMed ID: 15742706
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Retention efficacy and release of radioiodine in fume hoods.
    Schomäcker K; Fischer T; Zimmermanns B; Bregulla J; Sudbrock F; Prante O; Drzezga A
    J Environ Radioact; 2017 Jan; 166(Pt 1):175-180. PubMed ID: 26825260
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Experimental characterization of a plume of passive contaminant above a thermal source: capture efficiency of a fume extraction hood.
    Devienne R; Fontaine JR; Kicka J; Bonthoux F
    Ann Occup Hyg; 2009 Oct; 53(7):739-48. PubMed ID: 19666957
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Local ventilation solution for large, warm emission sources.
    Kulmala I; Hynynen P; Welling I; Säämänen A
    Ann Occup Hyg; 2007 Jan; 51(1):35-43. PubMed ID: 16861238
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Research on the axial velocity change rule of desktop slot exhaust hood.
    Chen J
    Ind Health; 2018 Jul; 56(4):278-284. PubMed ID: 29459580
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of shape, size, and air velocity on entry loss factors of suction hoods.
    McLoone HE; Guffey SE; Curran JP
    Am Ind Hyg Assoc J; 1993 Mar; 54(3):87-94. PubMed ID: 8447256
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Airflow equation for an exterior type plain circular hood].
    Ojima J
    Sangyo Eiseigaku Zasshi; 2017 Jan; 59(1):19-22. PubMed ID: 27885211
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.