These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 23520002)

  • 1. Probing local backbone geometries in intrinsically disordered proteins by cross-correlated NMR relaxation.
    Stanek J; Saxena S; Geist L; Konrat R; Koźmiński W
    Angew Chem Int Ed Engl; 2013 Apr; 52(17):4604-6. PubMed ID: 23520002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defining conformational ensembles of intrinsically disordered and partially folded proteins directly from chemical shifts.
    Jensen MR; Salmon L; Nodet G; Blackledge M
    J Am Chem Soc; 2010 Feb; 132(4):1270-2. PubMed ID: 20063887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel high-dimensional NMR experiment for resolving protein backbone dihedral angle ambiguities.
    Kauffmann C; Kazimierczuk K; Schwarz TC; Konrat R; Zawadzka-Kazimierczuk A
    J Biomol NMR; 2020 May; 74(4-5):257-265. PubMed ID: 32239382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analytical Description of NMR Relaxation Highlights Correlated Dynamics in Intrinsically Disordered Proteins.
    Salvi N; Abyzov A; Blackledge M
    Angew Chem Int Ed Engl; 2017 Nov; 56(45):14020-14024. PubMed ID: 28834051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A six-dimensional alpha proton detection-based APSY experiment for backbone assignment of intrinsically disordered proteins.
    Yao X; Becker S; Zweckstetter M
    J Biomol NMR; 2014 Dec; 60(4):231-40. PubMed ID: 25367087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proton-decoupled CPMG: a better experiment for measuring (15)N R2 relaxation in disordered proteins.
    Yuwen T; Skrynnikov NR
    J Magn Reson; 2014 Apr; 241():155-69. PubMed ID: 24120537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Homonuclear decoupling for enhancing resolution and sensitivity in NOE and RDC measurements of peptides and proteins.
    Ying J; Roche J; Bax A
    J Magn Reson; 2014 Apr; 241():97-102. PubMed ID: 24360766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature-induced transitions in disordered proteins probed by NMR spectroscopy.
    Kjaergaard M; Poulsen FM; Kragelund BB
    Methods Mol Biol; 2012; 896():233-47. PubMed ID: 22821528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein dynamics by ¹⁵N nuclear magnetic relaxation.
    Ferrage F
    Methods Mol Biol; 2012; 831():141-63. PubMed ID: 22167673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Easy and unambiguous sequential assignments of intrinsically disordered proteins by correlating the backbone 15N or 13C' chemical shifts of multiple contiguous residues in highly resolved 3D spectra.
    Yoshimura Y; Kulminskaya NV; Mulder FA
    J Biomol NMR; 2015 Feb; 61(2):109-21. PubMed ID: 25577242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMR probing and visualization of correlated structural fluctuations in intrinsically disordered proteins.
    Kurzbach D; Beier A; Vanas A; Flamm AG; Platzer G; Schwarz TC; Konrat R
    Phys Chem Chem Phys; 2017 Apr; 19(16):10651-10656. PubMed ID: 28397898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing slow backbone dynamics in proteins using TROSY-based experiments to detect cross-correlated time-modulation of isotropic chemical shifts.
    Majumdar A; Ghose R
    J Biomol NMR; 2004 Mar; 28(3):213-27. PubMed ID: 14752255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving the chemical shift dispersion of multidimensional NMR spectra of intrinsically disordered proteins.
    Bermel W; Bruix M; Felli IC; Kumar M V V; Pierattelli R; Serrano S
    J Biomol NMR; 2013 Mar; 55(3):231-7. PubMed ID: 23314728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 4D non-uniformly sampled HCBCACON and ¹J(NCα)-selective HCBCANCO experiments for the sequential assignment and chemical shift analysis of intrinsically disordered proteins.
    Nováček J; Haba NY; Chill JH; Zídek L; Sklenář V
    J Biomol NMR; 2012 Jun; 53(2):139-48. PubMed ID: 22580891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Use of
    Cook EC; Usher GA; Showalter SA
    Methods Enzymol; 2018; 611():81-100. PubMed ID: 30471706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A J-modulated protonless NMR experiment characterizes the conformational ensemble of the intrinsically disordered protein WIP.
    Rozentur-Shkop E; Goobes G; Chill JH
    J Biomol NMR; 2016 Dec; 66(4):243-257. PubMed ID: 27844185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 15N chemical shift anisotropy in protein structure refinement and comparison with NH residual dipolar couplings.
    Lipsitz RS; Tjandra N
    J Magn Reson; 2003 Sep; 164(1):171-6. PubMed ID: 12932470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of multiple torsion-angle constraints in U-(13)C,(15)N-labeled peptides: 3D (1)H-(15)N-(13)C-(1)H dipolar chemical shift NMR spectroscopy in rotating solids.
    Rienstra CM; Hohwy M; Mueller LJ; Jaroniec CP; Reif B; Griffin RG
    J Am Chem Soc; 2002 Oct; 124(40):11908-22. PubMed ID: 12358535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Refinement of the protein backbone angle psi in NMR structure calculations.
    Sprangers R; Bottomley MJ; Linge JP; Schultz J; Nilges M; Sattler M
    J Biomol NMR; 2000 Jan; 16(1):47-58. PubMed ID: 10718612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterizing domain interfaces by NMR.
    Rooney LM; Sachchidanand ; Werner JM
    Methods Mol Biol; 2004; 278():123-38. PubMed ID: 15317995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.