BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 23520280)

  • 1. Epigenetics and fetal metabolic programming: a call for integrated research on larger cohorts.
    Bouchard L
    Diabetes; 2013 Apr; 62(4):1026-8. PubMed ID: 23520280
    [No Abstract]   [Full Text] [Related]  

  • 2. Metabolic programming of MEST DNA methylation by intrauterine exposure to gestational diabetes mellitus.
    El Hajj N; Pliushch G; Schneider E; Dittrich M; Müller T; Korenkov M; Aretz M; Zechner U; Lehnen H; Haaf T
    Diabetes; 2013 Apr; 62(4):1320-8. PubMed ID: 23209187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adverse Maternal Metabolic Intrauterine Environment and Placental Epigenetics: Implications for Fetal Metabolic Programming.
    Lesseur C; Chen J
    Curr Environ Health Rep; 2018 Dec; 5(4):531-543. PubMed ID: 30267228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic programming, epigenetics, and gestational diabetes mellitus.
    Pinney SE; Simmons RA
    Curr Diab Rep; 2012 Feb; 12(1):67-74. PubMed ID: 22127642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gestational diabetes mellitus alters DNA methylation profiles in pancreas of the offspring mice.
    Zhu Z; Chen X; Xiao Y; Wen J; Chen J; Wang K; Chen G
    J Diabetes Complications; 2019 Jan; 33(1):15-22. PubMed ID: 30522793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gestational diabetes mellitus, programing and epigenetics.
    Yan J; Yang H
    J Matern Fetal Neonatal Med; 2014 Aug; 27(12):1266-9. PubMed ID: 24125565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intrauterine hyperglycemia exposure results in intergenerational inheritance via DNA methylation reprogramming on F1 PGCs.
    Ren J; Cheng Y; Ming ZH; Dong XY; Zhou YZ; Ding GL; Pang HY; Rahman TU; Akbar R; Huang HF; Sheng JZ
    Epigenetics Chromatin; 2018 May; 11(1):20. PubMed ID: 29801514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fetal programming and gestational diabetes mellitus.
    Monteiro LJ; Norman JE; Rice GE; Illanes SE
    Placenta; 2016 Dec; 48 Suppl 1():S54-S60. PubMed ID: 26724985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of fetal and neonatal environment on beta cell function and development of diabetes.
    Nielsen JH; Haase TN; Jaksch C; Nalla A; Søstrup B; Nalla AA; Larsen L; Rasmussen M; Dalgaard LT; Gaarn LW; Thams P; Kofod H; Billestrup N
    Acta Obstet Gynecol Scand; 2014 Nov; 93(11):1109-22. PubMed ID: 25225114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Insight into the Interaction between Epigenetics and Leptin in Metabolic Disorders.
    Wróblewski A; Strycharz J; Świderska E; Drewniak K; Drzewoski J; Szemraj J; Kasznicki J; Śliwińska A
    Nutrients; 2019 Aug; 11(8):. PubMed ID: 31408957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epigenetic Changes in Gestational Diabetes Mellitus.
    Dłuski DF; Wolińska E; Skrzypczak M
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Offspring DNA methylation of the aryl-hydrocarbon receptor repressor gene is associated with maternal BMI, gestational age, and birth weight.
    Burris HH; Baccarelli AA; Byun HM; Cantoral A; Just AC; Pantic I; Solano-Gonzalez M; Svensson K; Tamayo y Ortiz M; Zhao Y; Wright RO; Téllez-Rojo MM
    Epigenetics; 2015; 10(10):913-21. PubMed ID: 26252179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epigenetics and DOHaD: from basics to birth and beyond.
    Bianco-Miotto T; Craig JM; Gasser YP; van Dijk SJ; Ozanne SE
    J Dev Orig Health Dis; 2017 Oct; 8(5):513-519. PubMed ID: 28889823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maternal obesity and prenatal programming.
    Elshenawy S; Simmons R
    Mol Cell Endocrinol; 2016 Nov; 435():2-6. PubMed ID: 27392495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fat mass and obesity-associated (FTO) gene epigenetic modifications in gestational diabetes: new insights and possible pathophysiological connections.
    Franzago M; Fraticelli F; Marchioni M; Di Nicola M; Di Sebastiano F; Liberati M; Stuppia L; Vitacolonna E
    Acta Diabetol; 2021 Aug; 58(8):997-1007. PubMed ID: 33743080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Foetoplacental epigenetic changes associated with maternal metabolic dysfunction.
    Kerr B; Leiva A; Farías M; Contreras-Duarte S; Toledo F; Stolzenbach F; Silva L; Sobrevia L
    Placenta; 2018 Sep; 69():146-152. PubMed ID: 29699712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reproductive medicine and inheritance of infertility by offspring: the role of fetal programming.
    Díaz-García C; Estella C; Perales-Puchalt A; Simón C
    Fertil Steril; 2011 Sep; 96(3):536-45. PubMed ID: 21794856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epigenetic mechanisms in fetal origins of health and disease.
    Osborne-Majnik A; Fu Q; Lane RH
    Clin Obstet Gynecol; 2013 Sep; 56(3):622-32. PubMed ID: 23787712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mediation Analysis Supports a Causal Relationship between Maternal Hyperglycemia and Placental DNA Methylation Variations at the Leptin Gene Locus and Cord Blood Leptin Levels.
    Gagné-Ouellet V; Breton E; Thibeault K; Fortin CA; Cardenas A; Guérin R; Perron P; Hivert MF; Bouchard L
    Int J Mol Sci; 2020 Jan; 21(1):. PubMed ID: 31947745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epigenetic programming by maternal nutrition: shaping future generations.
    Li CC; Maloney CA; Cropley JE; Suter CM
    Epigenomics; 2010 Aug; 2(4):539-49. PubMed ID: 22121973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.