These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 23520341)

  • 21. Mitochondrial capacity, muscle endurance, and low energy in friedreich ataxia.
    Bossie HM; Willingham TB; Schoick RAV; O'Connor PJ; McCully KK
    Muscle Nerve; 2017 Oct; 56(4):773-779. PubMed ID: 28000230
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adaptation of mitochondrial ATP production in human skeletal muscle to endurance training and detraining.
    Wibom R; Hultman E; Johansson M; Matherei K; Constantin-Teodosiu D; Schantz PG
    J Appl Physiol (1985); 1992 Nov; 73(5):2004-10. PubMed ID: 1474078
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combined training enhances skeletal muscle mitochondrial oxidative capacity independent of age.
    Irving BA; Lanza IR; Henderson GC; Rao RR; Spiegelman BM; Nair KS
    J Clin Endocrinol Metab; 2015 Apr; 100(4):1654-63. PubMed ID: 25599385
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of Parkin and endurance training on mitochondrial turnover in skeletal muscle.
    Chen CCW; Erlich AT; Hood DA
    Skelet Muscle; 2018 Mar; 8(1):10. PubMed ID: 29549884
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Very intense exercise-training is extremely potent and time efficient: a reminder.
    Coyle EF
    J Appl Physiol (1985); 2005 Jun; 98(6):1983-4. PubMed ID: 15894535
    [No Abstract]   [Full Text] [Related]  

  • 26. Training-induced acceleration of oxygen uptake kinetics in skeletal muscle: the underlying mechanisms.
    Zoladz JA; Korzeniewski B; Grassi B
    J Physiol Pharmacol; 2006 Nov; 57 Suppl 10():67-84. PubMed ID: 17242492
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of endurance training on oxidative capacity and structural composition of human arm and leg muscles.
    Turner DL; Hoppeler H; Claassen H; Vock P; Kayser B; Schena F; Ferretti G
    Acta Physiol Scand; 1997 Dec; 161(4):459-64. PubMed ID: 9429652
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intermittent and continuous high-intensity exercise training induce similar acute but different chronic muscle adaptations.
    Cochran AJ; Percival ME; Tricarico S; Little JP; Cermak N; Gillen JB; Tarnopolsky MA; Gibala MJ
    Exp Physiol; 2014 May; 99(5):782-91. PubMed ID: 24532598
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mitochondrial Coupling and Contractile Efficiency in Humans with High and Low V˙O2peaks.
    Layec G; Bringard A; Le Fur Y; Micallef JP; Vilmen C; Perrey S; Cozzone PJ; Bendahan D
    Med Sci Sports Exerc; 2016 May; 48(5):811-21. PubMed ID: 26694849
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A short period of high-intensity interval training improves skeletal muscle mitochondrial function and pulmonary oxygen uptake kinetics.
    Christensen PM; Jacobs RA; Bonne T; Flück D; Bangsbo J; Lundby C
    J Appl Physiol (1985); 2016 Jun; 120(11):1319-27. PubMed ID: 26846547
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Endurance exercise training attenuates leucine oxidation and BCOAD activation during exercise in humans.
    McKenzie S; Phillips SM; Carter SL; Lowther S; Gibala MJ; Tarnopolsky MA
    Am J Physiol Endocrinol Metab; 2000 Apr; 278(4):E580-7. PubMed ID: 10751189
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New records in aerobic power among octogenarian lifelong endurance athletes.
    Trappe S; Hayes E; Galpin A; Kaminsky L; Jemiolo B; Fink W; Trappe T; Jansson A; Gustafsson T; Tesch P
    J Appl Physiol (1985); 2013 Jan; 114(1):3-10. PubMed ID: 23065759
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mitochondrial respiration variability and simulations in human skeletal muscle: The Gene SMART study.
    Jacques M; Kuang J; Bishop DJ; Yan X; Alvarez-Romero J; Munson F; Garnham A; Papadimitriou I; Voisin S; Eynon N
    FASEB J; 2020 Feb; 34(2):2978-2986. PubMed ID: 31919888
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carbohydrate ingestion during exercise and endurance performance.
    Bosch AN; Noakes TD
    Indian J Med Res; 2005 May; 121(5):634-8. PubMed ID: 15937366
    [No Abstract]   [Full Text] [Related]  

  • 35. Endurance in young athletes: it can be trained.
    Baxter-Jones AD; Maffulli N
    Br J Sports Med; 2003 Apr; 37(2):96-7. PubMed ID: 12663347
    [No Abstract]   [Full Text] [Related]  

  • 36. Balancing the evidence on the cardiovascular determinants of oxygen uptake improvement after endurance training in the elderly: What are the next steps?
    Mezzani A; Guazzi M
    Eur J Prev Cardiol; 2016 May; 23(7):730-2. PubMed ID: 26643520
    [No Abstract]   [Full Text] [Related]  

  • 37. Training to improve performance: one leg at a time.
    Layec G; Richardson RS
    Acta Physiol (Oxf); 2012 May; 205(1):186-8. PubMed ID: 22118248
    [No Abstract]   [Full Text] [Related]  

  • 38. A new model of short acceleration-based training improves exercise performance in old mice.
    Niel R; Ayachi M; Mille-Hamard L; Le Moyec L; Savarin P; Clement MJ; Besse S; Launay T; Billat VL; Momken I
    Scand J Med Sci Sports; 2017 Dec; 27(12):1576-1587. PubMed ID: 28000342
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Are Prepubertal Children Metabolically Comparable to Well-Trained Adult Endurance Athletes?
    Ratel S; Blazevich AJ
    Sports Med; 2017 Aug; 47(8):1477-1485. PubMed ID: 28044282
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Determinants of time trial performance and maximal incremental exercise in highly trained endurance athletes.
    Jacobs RA; Rasmussen P; Siebenmann C; Díaz V; Gassmann M; Pesta D; Gnaiger E; Nordsborg NB; Robach P; Lundby C
    J Appl Physiol (1985); 2011 Nov; 111(5):1422-30. PubMed ID: 21885805
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.