These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 23520484)

  • 21. Comparison of parameter-adapted segmentation methods for fluorescence micrographs.
    Held C; Palmisano R; Häberle L; Hensel M; Wittenberg T
    Cytometry A; 2011 Nov; 79(11):933-45. PubMed ID: 22002887
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Morphologically constrained and data informed cell segmentation of budding yeast.
    Bakker E; Swain PS; Crane MM
    Bioinformatics; 2018 Jan; 34(1):88-96. PubMed ID: 28968663
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Accurate automated segmentation of autophagic bodies in yeast vacuoles using cellpose 2.0.
    Marron EC; Backues J; Ross AM; Backues SK
    Autophagy; 2024 Sep; 20(9):2092-2099. PubMed ID: 38762750
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Algorithms for cytoplasm segmentation of fluorescence labelled cells.
    Wählby C; Lindblad J; Vondrus M; Bengtsson E; Björkesten L
    Anal Cell Pathol; 2002; 24(2-3):101-11. PubMed ID: 12446959
    [TBL] [Abstract][Full Text] [Related]  

  • 25. User-friendly tools for quantifying the dynamics of cellular morphology and intracellular protein clusters.
    Tsygankov D; Chu PH; Chen H; Elston TC; Hahn KM
    Methods Cell Biol; 2014; 123():409-27. PubMed ID: 24974040
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Robust and automated three-dimensional segmentation of densely packed cell nuclei in different biological specimens with Lines-of-Sight decomposition.
    Mathew B; Schmitz A; Muñoz-Descalzo S; Ansari N; Pampaloni F; Stelzer EH; Fischer SC
    BMC Bioinformatics; 2015 Jun; 16():187. PubMed ID: 26049713
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PDE Based Algorithms for Smooth Watersheds.
    Hodneland E; Tai XC; Kalisch H
    IEEE Trans Med Imaging; 2016 Apr; 35(4):957-66. PubMed ID: 26625408
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Machine Learning approach to discriminate Saccharomyces cerevisiae yeast cells using sophisticated image features.
    Tleis MS; Verbeek FJ
    J Integr Bioinform; 2015 Oct; 12(3):276. PubMed ID: 26673792
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cell tracking using phase-adaptive shape prior.
    Law YN
    J Microsc; 2013 Nov; 252(2):149-58. PubMed ID: 23962006
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multiple nuclei tracking using integer programming for quantitative cancer cell cycle analysis.
    Li F; Zhou X; Ma J; Wong ST
    IEEE Trans Med Imaging; 2010 Jan; 29(1):96-105. PubMed ID: 19643704
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Automatic colon segmentation with dual scan CT colonography.
    Li H; Santago P
    J Digit Imaging; 2005 Mar; 18(1):42-54. PubMed ID: 15645334
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Millisecond single-molecule localization microscopy combined with convolution analysis and automated image segmentation to determine protein concentrations in complexly structured, functional cells, one cell at a time.
    Wollman AJ; Leake MC
    Faraday Discuss; 2015; 184():401-24. PubMed ID: 26419209
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Threshold-based segmentation of fluorescent and chromogenic images of microglia, astrocytes and oligodendrocytes in FIJI.
    Healy S; McMahon J; Owens P; Dockery P; FitzGerald U
    J Neurosci Methods; 2018 Feb; 295():87-103. PubMed ID: 29221640
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Automated tracking in live-cell time-lapse movies.
    Youssef S; Gude S; Rädler JO
    Integr Biol (Camb); 2011 Nov; 3(11):1095-101. PubMed ID: 21959912
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Automated quantification and evaluation of motion artifact on coronary CT angiography images.
    Ma H; Gros E; Baginski SG; Laste ZR; Kulkarni NM; Okerlund D; Schmidt TG
    Med Phys; 2018 Dec; 45(12):5494-5508. PubMed ID: 30339290
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-Throughput Microscopy-Based Screening in Saccharomyces cerevisiae.
    Styles EB; Friesen H; Boone C; Andrews BJ
    Cold Spring Harb Protoc; 2016 Apr; 2016(4):pdb.top087593. PubMed ID: 27037080
    [TBL] [Abstract][Full Text] [Related]  

  • 37. FocAn: automated 3D analysis of DNA repair foci in image stacks acquired by confocal fluorescence microscopy.
    Memmel S; Sisario D; Zimmermann H; Sauer M; Sukhorukov VL; Djuzenova CS; Flentje M
    BMC Bioinformatics; 2020 Jan; 21(1):27. PubMed ID: 31992200
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Segmenting and Tracking Multiple Dividing Targets Using ilastik.
    Haubold C; Schiegg M; Kreshuk A; Berg S; Koethe U; Hamprecht FA
    Adv Anat Embryol Cell Biol; 2016; 219():199-229. PubMed ID: 27207368
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multiple objects tracking in fluorescence microscopy.
    Kalaidzidis Y
    J Math Biol; 2009 Jan; 58(1-2):57-80. PubMed ID: 18478231
    [TBL] [Abstract][Full Text] [Related]  

  • 40. BetaBuddy: An automated end-to-end computer vision pipeline for analysis of calcium fluorescence dynamics in β-cells.
    Alsup AM; Fowlds K; Cho M; Luber JM
    PLoS One; 2024; 19(3):e0299549. PubMed ID: 38489336
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.