BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 23520626)

  • 21. The CXCR4 antagonist plerixafor corrects panleukopenia in patients with WHIM syndrome.
    McDermott DH; Liu Q; Ulrick J; Kwatemaa N; Anaya-O'Brien S; Penzak SR; Filho JO; Priel DA; Kelly C; Garofalo M; Littel P; Marquesen MM; Hilligoss D; Decastro R; Fleisher TA; Kuhns DB; Malech HL; Murphy PM
    Blood; 2011 Nov; 118(18):4957-62. PubMed ID: 21890643
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stromal-derived factor-1 abolishes constitutive apoptosis of WHIM syndrome neutrophils harbouring a truncating CXCR4 mutation.
    Sanmun D; Garwicz D; Smith CI; Palmblad J; Fadeel B
    Br J Haematol; 2006 Sep; 134(6):640-4. PubMed ID: 16899028
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sporadic case of warts, hypogammaglobulinemia, immunodeficiency, and myelokathexis syndrome.
    Tarzi MD; Jenner M; Hattotuwa K; Faruqi AZ; Diaz GA; Longhurst HJ
    J Allergy Clin Immunol; 2005 Nov; 116(5):1101-5. PubMed ID: 16275383
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease.
    Hernandez PA; Gorlin RJ; Lukens JN; Taniuchi S; Bohinjec J; Francois F; Klotman ME; Diaz GA
    Nat Genet; 2003 May; 34(1):70-4. PubMed ID: 12692554
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [WHIM syndrome: presumptive diagnosis based on myelokathexis on bone marrow smear].
    Bock I; Dugué F; Loppinet E; Bellanné-Chantelot C; Bénet B
    Ann Biol Clin (Paris); 2014; 72(1):111-9. PubMed ID: 24492099
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adaptive Immunodeficiency in WHIM Syndrome.
    Majumdar S; Murphy PM
    Int J Mol Sci; 2018 Dec; 20(1):. PubMed ID: 30577453
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CXCR4 mutations in WHIM syndrome: a misguided immune system?
    Diaz GA
    Immunol Rev; 2005 Feb; 203():235-43. PubMed ID: 15661033
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CXCR4 dimerization and beta-arrestin-mediated signaling account for the enhanced chemotaxis to CXCL12 in WHIM syndrome.
    Lagane B; Chow KY; Balabanian K; Levoye A; Harriague J; Planchenault T; Baleux F; Gunera-Saad N; Arenzana-Seisdedos F; Bachelerie F
    Blood; 2008 Jul; 112(1):34-44. PubMed ID: 18436740
    [TBL] [Abstract][Full Text] [Related]  

  • 29. WHIM Syndrome Caused by Waldenström's Macroglobulinemia-Associated Mutation CXCR4 (L329fs).
    Liu Q; Pan C; Lopez L; Gao J; Velez D; Anaya-O'Brien S; Ulrick J; Littel P; Corns JS; Ellenburg DT; Malech HL; Murphy PM; McDermott DH
    J Clin Immunol; 2016 May; 36(4):397-405. PubMed ID: 27059040
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced function with decreased internalization of carboxy-terminus truncated CXCR4 responsible for WHIM syndrome.
    Kawai T; Choi U; Whiting-Theobald NL; Linton GF; Brenner S; Sechler JM; Murphy PM; Malech HL
    Exp Hematol; 2005 Apr; 33(4):460-8. PubMed ID: 15781337
    [TBL] [Abstract][Full Text] [Related]  

  • 31. WHIM syndrome: Immunopathogenesis, treatment and cure strategies.
    McDermott DH; Murphy PM
    Immunol Rev; 2019 Jan; 287(1):91-102. PubMed ID: 30565238
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Live imaging of neutrophil motility in a zebrafish model of WHIM syndrome.
    Walters KB; Green JM; Surfus JC; Yoo SK; Huttenlocher A
    Blood; 2010 Oct; 116(15):2803-11. PubMed ID: 20592249
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genotype-phenotype correlations in WHIM syndrome: a systematic characterization of CXCR4
    Zmajkovicova K; Pawar S; Maier-Munsa S; Maierhofer B; Wiest I; Skerlj R; Taveras AG; Badarau A
    Genes Immun; 2022 Sep; 23(6):196-204. PubMed ID: 36089616
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Leukocyte analysis from WHIM syndrome patients reveals a pivotal role for GRK3 in CXCR4 signaling.
    Balabanian K; Levoye A; Klemm L; Lagane B; Hermine O; Harriague J; Baleux F; Arenzana-Seisdedos F; Bachelerie F
    J Clin Invest; 2008 Mar; 118(3):1074-84. PubMed ID: 18274673
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of a mutation of the CXCR4 gene in WHIM syndrome.
    Taniuchi S; Masuda M; Fujii Y; Izawa K; Kanegane H; Kobayashi Y
    Haematologica; 2005 Sep; 90(9):1271-2. PubMed ID: 16154852
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Description and outcome of a cohort of 8 patients with WHIM syndrome from the French Severe Chronic Neutropenia Registry.
    Beaussant Cohen S; Fenneteau O; Plouvier E; Rohrlich PS; Daltroff G; Plantier I; Dupuy A; Kerob D; Beaupain B; Bordigoni P; Fouyssac F; Delezoide AL; Devouassoux G; Nicolas JF; Bensaid P; Bertrand Y; Balabanian K; Chantelot CB; Bachelerie F; Donadieu J
    Orphanet J Rare Dis; 2012 Sep; 7():71. PubMed ID: 23009155
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The CXCR4 mutations in WHIM syndrome impair the stability of the T-cell immunologic synapse.
    Kallikourdis M; Trovato AE; Anselmi F; Sarukhan A; Roselli G; Tassone L; Badolato R; Viola A
    Blood; 2013 Aug; 122(5):666-73. PubMed ID: 23794067
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Successful umbilical cord blood stem cell transplantation in a child with WHIM syndrome.
    Kriván G; Erdos M; Kállay K; Benyó G; Tóth A; Sinkó J; Goda V; Tóth B; Maródi L
    Eur J Haematol; 2010 Mar; 84(3):274-5. PubMed ID: 19878273
    [No Abstract]   [Full Text] [Related]  

  • 39. Primary immunodeficiencies appearing as combined lymphopenia, neutropenia, and monocytopenia.
    Dotta L; Badolato R
    Immunol Lett; 2014 Oct; 161(2):222-5. PubMed ID: 24316408
    [TBL] [Abstract][Full Text] [Related]  

  • 40. WHIM syndrome: a genetic disorder of leukocyte trafficking.
    Gulino AV
    Curr Opin Allergy Clin Immunol; 2003 Dec; 3(6):443-50. PubMed ID: 14612668
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.