These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 23521043)

  • 1. Peak forces in high-resolution imaging of soft matter in liquid.
    Guzman HV; Perrino AP; Garcia R
    ACS Nano; 2013 Apr; 7(4):3198-204. PubMed ID: 23521043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An atomic force microscope tip designed to measure time-varying nanomechanical forces.
    Sahin O; Magonov S; Su C; Quate CF; Solgaard O
    Nat Nanotechnol; 2007 Aug; 2(8):507-14. PubMed ID: 18654349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular and nanoscale compositional contrast of soft matter in liquid: interplay between elastic and dissipative interactions.
    Payam AF; Ramos JR; Garcia R
    ACS Nano; 2012 Jun; 6(6):4663-70. PubMed ID: 22578176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscale mapping of contact stiffness and damping by contact resonance atomic force microscopy.
    Stan G; King SW; Cook RF
    Nanotechnology; 2012 Jun; 23(21):215703. PubMed ID: 22551825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peak forces and lateral resolution in amplitude modulation force microscopy in liquid.
    Guzman HV; Garcia R
    Beilstein J Nanotechnol; 2013; 4():852-9. PubMed ID: 24367754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intermittent contact mode piezoresponse force microscopy in a liquid environment.
    Rodriguez BJ; Jesse S; Habelitz S; Proksch R; Kalinin SV
    Nanotechnology; 2009 May; 20(19):195701. PubMed ID: 19420645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution and large dynamic range nanomechanical mapping in tapping-mode atomic force microscopy.
    Sahin O; Erina N
    Nanotechnology; 2008 Nov; 19(44):445717. PubMed ID: 21832758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tribological behavior of a charged atomic force microscope tip on graphene oxide films.
    Jiang Y; Li Y; Liang B; Yang X; Han T; Wang Z
    Nanotechnology; 2012 Dec; 23(49):495703. PubMed ID: 23149394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elastic response of graphene nanodomes.
    Koch S; Stradi D; Gnecco E; Barja S; Kawai S; Díaz C; Alcamí M; Martín F; Vázquez de Parga AL; Miranda R; Glatzel T; Meyer E
    ACS Nano; 2013 Apr; 7(4):2927-34. PubMed ID: 23473381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elastic and viscoelastic characterization of microcapsules for drug delivery using a force-feedback MEMS microgripper.
    Kim K; Liu X; Zhang Y; Cheng J; Yu Wu X; Sun Y
    Biomed Microdevices; 2009 Apr; 11(2):421-7. PubMed ID: 19015993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measuring glassy and viscoelastic polymer flow in molecular-scale gaps using a flat punch mechanical probe.
    Rowland HD; King WP; Cross GL; Pethica JB
    ACS Nano; 2008 Mar; 2(3):419-28. PubMed ID: 19206565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical properties of organic nanofibers.
    Kjelstrup-Hansen J; Hansen O; Rubahn HG; Bøggild P
    Small; 2006 May; 2(5):660-6. PubMed ID: 17193104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Competing effects of particle and medium inertia on particle diffusion in viscoelastic materials, and their ramifications for passive microrheology.
    Indei T; Schieber JD; Córdoba A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041504. PubMed ID: 22680480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomic force microscopy of confined liquids using the thermal bending fluctuations of the cantilever.
    Liu F; de Beer S; van den Ende D; Mugele F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062406. PubMed ID: 23848696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nano-mechanical exploration of the surface and sub-surface of hydrated cells of Staphylococcus epidermidis.
    Méndez-Vilas A; Gallardo-Moreno AM; González-Martín ML
    Antonie Van Leeuwenhoek; 2006; 89(3-4):373-86. PubMed ID: 16779634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scaling law to determine peak forces in tapping-mode AFM experiments on finite elastic soft matter systems.
    Guzman HV
    Beilstein J Nanotechnol; 2017; 8():968-974. PubMed ID: 28546891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscale thermomechanics of wear-resilient polymeric bilayer systems.
    Kaule T; Zhang Y; Emmerling S; Pihan S; Foerch R; Gutmann J; Butt HJ; Berger R; Duerig U; Knoll AW
    ACS Nano; 2013 Jan; 7(1):748-59. PubMed ID: 23256440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stretching and breaking of ultrathin MoS2.
    Bertolazzi S; Brivio J; Kis A
    ACS Nano; 2011 Dec; 5(12):9703-9. PubMed ID: 22087740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring viscoelasticity of soft samples using atomic force microscopy.
    Tripathy S; Berger EJ
    J Biomech Eng; 2009 Sep; 131(9):094507. PubMed ID: 19725704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of atomic force microscope with wide-band magnetic excitation for study of soft matter dynamics.
    Kageshima M; Chikamoto T; Ogawa T; Hirata Y; Inoue T; Naitoh Y; Li YJ; Sugawara Y
    Rev Sci Instrum; 2009 Feb; 80(2):023705. PubMed ID: 19256651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.