These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 23521132)
1. A redox responsive, fluorescent supramolecular metallohydrogel consists of nanofibers with single-molecule width. Zhang Y; Zhang B; Kuang Y; Gao Y; Shi J; Zhang XX; Xu B J Am Chem Soc; 2013 Apr; 135(13):5008-11. PubMed ID: 23521132 [TBL] [Abstract][Full Text] [Related]
2. Biocompatible fluorescent supramolecular nanofibrous hydrogel for long-term cell tracking and tumor imaging applications. Wang H; Mao D; Wang Y; Wang K; Yi X; Kong D; Yang Z; Liu Q; Ding D Sci Rep; 2015 Nov; 5():16680. PubMed ID: 26573372 [TBL] [Abstract][Full Text] [Related]
3. Using a kinase/phosphatase switch to regulate a supramolecular hydrogel and forming the supramolecular hydrogel in vivo. Yang Z; Liang G; Wang L; Xu B J Am Chem Soc; 2006 Mar; 128(9):3038-43. PubMed ID: 16506785 [TBL] [Abstract][Full Text] [Related]
4. Intramolecular interactions of a phenyl/perfluorophenyl pair in the formation of supramolecular nanofibers and hydrogels. Hsu SM; Lin YC; Chang JW; Liu YH; Lin HC Angew Chem Int Ed Engl; 2014 Feb; 53(7):1921-7. PubMed ID: 24420005 [TBL] [Abstract][Full Text] [Related]
5. Bipyridine hydrogel for selective and visible detection and absorption of Cd(2+). Miao Q; Wu Z; Hai Z; Tao C; Yuan Q; Gong Y; Guan Y; Jiang J; Liang G Nanoscale; 2015 Feb; 7(6):2797-804. PubMed ID: 25584838 [TBL] [Abstract][Full Text] [Related]
6. Molecular nanofibers of olsalazine form supramolecular hydrogels for reductive release of an anti-inflammatory agent. Li X; Li J; Gao Y; Kuang Y; Shi J; Xu B J Am Chem Soc; 2010 Dec; 132(50):17707-9. PubMed ID: 21121607 [TBL] [Abstract][Full Text] [Related]
7. Bending nanofibers into nanospirals: coordination chemistry as a tool for shaping hydrophobic assemblies. Kossoy E; Weissman H; Rybtchinski B Chemistry; 2015 Jan; 21(1):166-76. PubMed ID: 25393943 [TBL] [Abstract][Full Text] [Related]
8. Construction of self-assembled nanostructure-based tetraphenylethylene dipeptides: supramolecular nanobelts as biomimetic hydrogels for cell adhesion and proliferation. Talloj SK; Mohammed M; Lin HC J Mater Chem B; 2020 Aug; 8(33):7483-7493. PubMed ID: 32667379 [TBL] [Abstract][Full Text] [Related]
9. DEVD-based hydrogelator minimizes cellular apoptosis induction. Tang AM; Wang WJ; Mei B; Hu WL; Wu M; Liang GL Sci Rep; 2013; 3():1848. PubMed ID: 23673405 [TBL] [Abstract][Full Text] [Related]
10. Printable Fluorescent Hydrogels Based on Self-Assembling Peptides. Xia Y; Xue B; Qin M; Cao Y; Li Y; Wang W Sci Rep; 2017 Aug; 7(1):9691. PubMed ID: 28852128 [TBL] [Abstract][Full Text] [Related]
11. Smart hydrogels from laterally-grafted peptide assembly. Li W; Park IS; Kang SK; Lee M Chem Commun (Camb); 2012 Sep; 48(70):8796-8. PubMed ID: 22836696 [TBL] [Abstract][Full Text] [Related]
12. Enzymatic fluorescent supramolecular hydrogel with aggregation-induced emission characteristics for sensing alkaline phosphatase. Deng Y; Fu C; Xu A; He R; Lu W; Liu M Spectrochim Acta A Mol Biomol Spectrosc; 2024 Aug; 316():124334. PubMed ID: 38678837 [TBL] [Abstract][Full Text] [Related]
13. Design Strategies of Stimuli-Responsive Supramolecular Hydrogels Relying on Structural Analyses and Cell-Mimicking Approaches. Shigemitsu H; Hamachi I Acc Chem Res; 2017 Apr; 50(4):740-750. PubMed ID: 28252940 [TBL] [Abstract][Full Text] [Related]
14. Aromatic-aromatic interactions induce the self-assembly of pentapeptidic derivatives in water to form nanofibers and supramolecular hydrogels. Ma M; Kuang Y; Gao Y; Zhang Y; Gao P; Xu B J Am Chem Soc; 2010 Mar; 132(8):2719-28. PubMed ID: 20131781 [TBL] [Abstract][Full Text] [Related]
15. Biocompatible Supramolecular Catalytic One-Dimensional Nanofibers for Efficient Labeling of Live Cells. Khalily MA; Gulseren G; Tekinay AB; Guler MO Bioconjug Chem; 2015 Dec; 26(12):2371-5. PubMed ID: 26457765 [TBL] [Abstract][Full Text] [Related]
16. Environment-sensitive fluorescent supramolecular nanofibers for imaging applications. Cai Y; Shi Y; Wang H; Wang J; Ding D; Wang L; Yang Z Anal Chem; 2014 Feb; 86(4):2193-9. PubMed ID: 24467604 [TBL] [Abstract][Full Text] [Related]
17. Multistimuli-Responsive, Moldable Supramolecular Hydrogels Cross-Linked by Ultrafast Complexation of Metal Ions and Biopolymers. Sun Z; Lv F; Cao L; Liu L; Zhang Y; Lu Z Angew Chem Int Ed Engl; 2015 Jun; 54(27):7944-8. PubMed ID: 26012538 [TBL] [Abstract][Full Text] [Related]
18. Stiff, multistimuli-responsive supramolecular hydrogels as unique molds for 2D/3D microarchitectures of live cells. Komatsu H; Tsukiji S; Ikeda M; Hamachi I Chem Asian J; 2011 Sep; 6(9):2368-75. PubMed ID: 21721133 [TBL] [Abstract][Full Text] [Related]
19. Supramolecular hydrogels based on the epitope of potassium ion channels. Kuang Y; Gao Y; Shi J; Lin HC; Xu B Chem Commun (Camb); 2011 Aug; 47(31):8772-4. PubMed ID: 21701756 [TBL] [Abstract][Full Text] [Related]
20. Enzymatic Dissolution of Biocomposite Solids Consisting of Phosphopeptides to Form Supramolecular Hydrogels. Shi J; Yuan D; Haburcak R; Zhang Q; Zhao C; Zhang X; Xu B Chemistry; 2015 Dec; 21(50):18047-51. PubMed ID: 26462722 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]