These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 23521300)

  • 1. Lift and down-gradient shear-induced diffusion in red blood cell suspensions.
    Grandchamp X; Coupier G; Srivastav A; Minetti C; Podgorski T
    Phys Rev Lett; 2013 Mar; 110(10):108101. PubMed ID: 23521300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blood Crystal: Emergent Order of Red Blood Cells Under Wall-Confined Shear Flow.
    Shen Z; Fischer TM; Farutin A; Vlahovska PM; Harting J; Misbah C
    Phys Rev Lett; 2018 Jun; 120(26):268102. PubMed ID: 30004752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Migration velocity of red blood cells in microchannels.
    Losserand S; Coupier G; Podgorski T
    Microvasc Res; 2019 Jul; 124():30-36. PubMed ID: 30831125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rotational behaviour of red blood cells in suspension: a mesoscale simulation study.
    Janoschek F; Mancini F; Harting J; Toschi F
    Philos Trans A Math Phys Eng Sci; 2011 Jun; 369(1944):2337-44. PubMed ID: 21536581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow-Induced Transitions of Red Blood Cell Shapes under Shear.
    Mauer J; Mendez S; Lanotte L; Nicoud F; Abkarian M; Gompper G; Fedosov DA
    Phys Rev Lett; 2018 Sep; 121(11):118103. PubMed ID: 30265089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shear-induced gradient diffusivity of a red blood cell suspension: effects of cell dynamics from tumbling to tank-treading.
    Malipeddi AR; Sarkar K
    Soft Matter; 2021 Sep; 17(37):8523-8535. PubMed ID: 34499062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Collective dynamics of red blood cells on an in vitro microfluidic platform.
    M KR; Bhattacharya S; DasGupta S; Chakraborty S
    Lab Chip; 2018 Dec; 18(24):3939-3948. PubMed ID: 30475361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of shear rate, confinement, and particle parameters on margination in blood flow.
    Mehrabadi M; Ku DN; Aidun CK
    Phys Rev E; 2016 Feb; 93(2):023109. PubMed ID: 26986415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Red blood cell migration in microvessels.
    Mansour MH; Bressloff NW; Shearman CP
    Biorheology; 2010; 47(1):73-93. PubMed ID: 20448298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Swinging of red blood cells under shear flow.
    Abkarian M; Faivre M; Viallat A
    Phys Rev Lett; 2007 May; 98(18):188302. PubMed ID: 17501614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Erythrocyte concentration distribution in sheathed microfluidic flows.
    Aucoin CP; Nanne EE; Leonard EF
    ASAIO J; 2009; 55(5):423-7. PubMed ID: 19584710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of the temperature-dependent threshold shear-stress of red blood cell aggregation.
    Lim HJ; Nam JH; Lee YJ; Shin S
    Rev Sci Instrum; 2009 Sep; 80(9):096101. PubMed ID: 19791972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-phase CFD analytical modeling of blood flow.
    Jung J; Hassanein A
    Med Eng Phys; 2008 Jan; 30(1):91-103. PubMed ID: 17244522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analytical and numerical study of three main migration laws for vesicles under flow.
    Farutin A; Misbah C
    Phys Rev Lett; 2013 Mar; 110(10):108104. PubMed ID: 23521303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterogeneous red blood cell adhesion and deformability in sickle cell disease.
    Alapan Y; Little JA; Gurkan UA
    Sci Rep; 2014 Nov; 4():7173. PubMed ID: 25417696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shear-induced chiral migration of particles with anisotropic rigidity.
    Watari N; Larson RG
    Phys Rev Lett; 2009 Jun; 102(24):246001. PubMed ID: 19659030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous generation of chemical concentration and mechanical shear stress gradients using microfluidic osmotic flow comparable to interstitial flow.
    Park JY; Yoo SJ; Hwang CM; Lee SH
    Lab Chip; 2009 Aug; 9(15):2194-202. PubMed ID: 19606296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electroosmotic shear flow in microchannels.
    Mampallil D; van den Ende D
    J Colloid Interface Sci; 2013 Jan; 390(1):234-41. PubMed ID: 23089595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shear rate dependent margination of sphere-like, oblate-like and prolate-like micro-particles within blood flow.
    Ye H; Shen Z; Li Y
    Soft Matter; 2018 Sep; 14(36):7401-7419. PubMed ID: 30187053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microparticle shape effects on margination, near-wall dynamics and adhesion in a three-dimensional simulation of red blood cell suspension.
    Vahidkhah K; Bagchi P
    Soft Matter; 2015 Mar; 11(11):2097-109. PubMed ID: 25601616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.