BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 23521630)

  • 1. Molecular insights into diphenylalanine nanotube assembly: all-atom simulations of oligomerization.
    Jeon J; Mills CE; Shell MS
    J Phys Chem B; 2013 Apr; 117(15):3935-43. PubMed ID: 23521630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-assembly of cyclo-diphenylalanine peptides in vacuum.
    Jeon J; Shell MS
    J Phys Chem B; 2014 Jun; 118(24):6644-52. PubMed ID: 24877752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Triphenylalanine peptides self-assemble into nanospheres and nanorods that are different from the nanovesicles and nanotubes formed by diphenylalanine peptides.
    Guo C; Luo Y; Zhou R; Wei G
    Nanoscale; 2014 Mar; 6(5):2800-11. PubMed ID: 24468750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformation Dependence of Diphenylalanine Self-Assembly Structures and Dynamics: Insights from Hybrid-Resolution Simulations.
    Xiong Q; Jiang Y; Cai X; Yang F; Li Z; Han W
    ACS Nano; 2019 Apr; 13(4):4455-4468. PubMed ID: 30869864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diphenylalanine Peptide Nanotube Energy Harvesters.
    Lee JH; Heo K; Schulz-Schönhagen K; Lee JH; Desai MS; Jin HE; Lee SW
    ACS Nano; 2018 Aug; 12(8):8138-8144. PubMed ID: 30071165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural Polymorphism in a Self-Assembled Tri-Aromatic Peptide System.
    Brown N; Lei J; Zhan C; Shimon LJW; Adler-Abramovich L; Wei G; Gazit E
    ACS Nano; 2018 Apr; 12(4):3253-3262. PubMed ID: 29558116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of pH on the self-assembly of diphenylalanine peptides: molecular insights from coarse-grained simulations.
    Wang Y; Wang K; Zhao X; Xu X; Sun T
    Soft Matter; 2023 Aug; 19(30):5749-5757. PubMed ID: 37462931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational dynamics and aggregation behavior of piezoelectric diphenylalanine peptides in an external electric field.
    Kelly CM; Northey T; Ryan K; Brooks BR; Kholkin AL; Rodriguez BJ; Buchete NV
    Biophys Chem; 2015 Jan; 196():16-24. PubMed ID: 25240398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the self-assembly mechanism of diphenylalanine-based peptide nanovesicles and nanotubes.
    Guo C; Luo Y; Zhou R; Wei G
    ACS Nano; 2012 May; 6(5):3907-18. PubMed ID: 22468743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Initial Aggregation and Ordering Mechanism of Diphenylalanine from Microsecond All-Atom Molecular Dynamics Simulations.
    Anderson J; Lake PT; McCullagh M
    J Phys Chem B; 2018 Dec; 122(51):12331-12341. PubMed ID: 30511861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-Assembly of Tetraphenylalanine Peptides.
    Mayans E; Ballano G; Casanovas J; Díaz A; Pérez-Madrigal MM; Estrany F; Puiggalí J; Cativiela C; Alemán C
    Chemistry; 2015 Nov; 21(47):16895-905. PubMed ID: 26419936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembly of phenylalanine oligopeptides: insights from experiments and simulations.
    Tamamis P; Adler-Abramovich L; Reches M; Marshall K; Sikorski P; Serpell L; Gazit E; Archontis G
    Biophys J; 2009 Jun; 96(12):5020-9. PubMed ID: 19527662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of heterochirality-mediated stereochemical interactions in peptide architectures.
    Zheng Y; Mao K; Chen S; Zhu X; Jiang M; Wu CJ; Zhu H
    Colloids Surf B Biointerfaces; 2023 Apr; 224():113200. PubMed ID: 36774824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of solvent on the self-assembly of dialanine and diphenylalanine peptides.
    Rissanou AN; Georgilis E; Kasotakis E; Mitraki A; Harmandaris V
    J Phys Chem B; 2013 Apr; 117(15):3962-75. PubMed ID: 23510047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-assembly of diphenylalanine peptides on graphene
    Rissanou AN; Keliri A; Arnittali M; Harmandaris V
    Phys Chem Chem Phys; 2020 Dec; 22(47):27645-27657. PubMed ID: 33283818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular modeling and computational study of the chiral-dependent structures and properties of self-assembling diphenylalanine peptide nanotubes.
    Bystrov VS; Zelenovskiy PS; Nuraeva AS; Kopyl S; Zhulyabina OA; Tverdislov VA
    J Mol Model; 2019 Jun; 25(7):199. PubMed ID: 31240406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expanding the structural diversity of peptide assemblies by coassembling dipeptides with diphenylalanine.
    Tang Y; Yao Y; Wei G
    Nanoscale; 2020 Feb; 12(5):3038-3049. PubMed ID: 31971529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New Insight into the Structural Nature of Diphenylalanine Nanotube through Comparison with Amyloid Assemblies.
    Yang L; Wang Y; Zhang W; Ma G
    Langmuir; 2024 Jan; 40(1):1046-1057. PubMed ID: 38153333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Charged diphenylalanine nanotubes and controlled hierarchical self-assembly.
    Wang M; Du L; Wu X; Xiong S; Chu PK
    ACS Nano; 2011 Jun; 5(6):4448-54. PubMed ID: 21591732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stability of diphenylalanine peptide nanotubes in solution.
    Andersen KB; Castillo-Leon J; Hedström M; Svendsen WE
    Nanoscale; 2011 Mar; 3(3):994-8. PubMed ID: 21132174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.