These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 23522048)

  • 1. Making waves: initiation and propagation of corticothalamic Ca2+ waves in vivo.
    Stroh A; Adelsberger H; Groh A; Rühlmann C; Fischer S; Schierloh A; Deisseroth K; Konnerth A
    Neuron; 2013 Mar; 77(6):1136-50. PubMed ID: 23522048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synchrony in the interconnected circuitry of the thalamus and cerebral cortex.
    Jones EG
    Ann N Y Acad Sci; 2009 Mar; 1157():10-23. PubMed ID: 19351352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bimodal septal and cortical triggering and complex propagation patterns of spontaneous waves of activity in the developing mouse cerebral cortex.
    Conhaim J; Cedarbaum ER; Barahimi M; Moore JG; Becker MI; Gleiss H; Kohl C; Moody WJ
    Dev Neurobiol; 2010 Sep; 70(10):679-92. PubMed ID: 20506182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling sleep and wakefulness in the thalamocortical system.
    Hill S; Tononi G
    J Neurophysiol; 2005 Mar; 93(3):1671-98. PubMed ID: 15537811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complementary Ca
    Augustinaite S; Kuhn B
    Curr Biol; 2020 Oct; 30(20):3945-3960.e5. PubMed ID: 32822605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coalescence of sleep rhythms and their chronology in corticothalamic networks.
    Steriade M; Amzica F
    Sleep Res Online; 1998; 1(1):1-10. PubMed ID: 11382851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spindle waves are propagating synchronized oscillations in the ferret LGNd in vitro.
    Kim U; Bal T; McCormick DA
    J Neurophysiol; 1995 Sep; 74(3):1301-23. PubMed ID: 7500152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptation in the corticothalamic loop: computational prospects of tuning the senses.
    Hillenbrand U; van Hemmen JL
    Philos Trans R Soc Lond B Biol Sci; 2002 Dec; 357(1428):1859-67. PubMed ID: 12626019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating local and long-range neuronal network dynamics by simultaneous optogenetics, reverse microdialysis and silicon probe recordings in vivo.
    Taylor H; Schmiedt JT; Carçak N; Onat F; Di Giovanni G; Lambert R; Leresche N; Crunelli V; David F
    J Neurosci Methods; 2014 Sep; 235():83-91. PubMed ID: 25004203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An integrated μLED optrode for optogenetic stimulation and electrical recording.
    Cao H; Gu L; Mohanty SK; Chiao JC
    IEEE Trans Biomed Eng; 2013 Jan; 60(1):225-9. PubMed ID: 22968201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Grouping of brain rhythms in corticothalamic systems.
    Steriade M
    Neuroscience; 2006; 137(4):1087-106. PubMed ID: 16343791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Widespread optogenetic expression in macaque cortex obtained with MR-guided, convection enhanced delivery (CED) of AAV vector to the thalamus.
    Yazdan-Shahmorad A; Tian N; Kharazia V; Samaranch L; Kells A; Bringas J; He J; Bankiewicz K; Sabes PN
    J Neurosci Methods; 2018 Jan; 293():347-358. PubMed ID: 29042259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optogenetic Stimulation Shifts the Excitability of Cerebral Cortex from Type I to Type II: Oscillation Onset and Wave Propagation.
    Heitmann S; Rule M; Truccolo W; Ermentrout B
    PLoS Comput Biol; 2017 Jan; 13(1):e1005349. PubMed ID: 28118355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How not to study spontaneous activity.
    Logothetis NK; Murayama Y; Augath M; Steffen T; Werner J; Oeltermann A
    Neuroimage; 2009 May; 45(4):1080-9. PubMed ID: 19344685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Individual auditory thalamic reticular neurons have large and cross-modal sources of cortical and thalamic inputs.
    Yu XJ; Meng XK; Xu XX; He J
    Neuroscience; 2011 Oct; 193():122-31. PubMed ID: 21820493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dendritic spine heterogeneity determines afferent-specific Hebbian plasticity in the amygdala.
    Humeau Y; Herry C; Kemp N; Shaban H; Fourcaudot E; Bissière S; Lüthi A
    Neuron; 2005 Jan; 45(1):119-31. PubMed ID: 15629707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thalamic reticular nucleus induces fast and local modulation of arousal state.
    Lewis LD; Voigts J; Flores FJ; Schmitt LI; Wilson MA; Halassa MM; Brown EN
    Elife; 2015 Oct; 4():e08760. PubMed ID: 26460547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequency-dependent entrainment of neocortical slow oscillation to repeated optogenetic stimulation in the anesthetized rat.
    Kuki T; Ohshiro T; Ito S; Ji ZG; Fukazawa Y; Matsuzaka Y; Yawo H; Mushiake H
    Neurosci Res; 2013 Jan; 75(1):35-45. PubMed ID: 23154073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Re-examination of the plasticity of the corticothalamic projection after unilateral neonatal lesion of the sensorimotor cortex in the rat: a phaseolus vulgaris-leucoagglutinin tracing study.
    Yu XH; Moret V; Rouiller EM
    J Hirnforsch; 1995; 36(1):123-33. PubMed ID: 7751603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recordings, behaviour and models related to corticothalamic feedback.
    Gerstein GL; Kirkland KL; Musial PG; Talwar SK
    Philos Trans R Soc Lond B Biol Sci; 2002 Dec; 357(1428):1835-41. PubMed ID: 12626016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.