BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 23522110)

  • 1. Application of magnetic and core-shell nanoparticles to determine enrofloxacin and its metabolite using laser induced fluorescence microscope.
    Kim S; Ko J; Lim HB
    Anal Chim Acta; 2013 Apr; 771():37-41. PubMed ID: 23522110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescent Ru(phen)3(2+)-doped silica nanoparticles-based ICTS sensor for quantitative detection of enrofloxacin residues in chicken meat.
    Huang X; Aguilar ZP; Li H; Lai W; Wei H; Xu H; Xiong Y
    Anal Chem; 2013 May; 85(10):5120-8. PubMed ID: 23614687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sample treatment platform using nanoparticles to determine salinomycin in flesh and meat.
    Park J; Lim HB
    Food Chem; 2014 Oct; 160():112-7. PubMed ID: 24799216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser-induced fluorescence reader with a turbidimetric system for sandwich-type immunoassay using nanoparticles.
    Kim YH; Lim HB
    Anal Chim Acta; 2015 Jul; 883():32-6. PubMed ID: 26088773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-enhanced fluorescent dye-doped silica nanoparticles and magnetic separation: A sensitive platform for one-step fluorescence detection of prostate specific antigen.
    Xu DD; Deng YL; Li CY; Lin Y; Tang HW
    Biosens Bioelectron; 2017 Jan; 87():881-887. PubMed ID: 27662582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic and fluorescent core-shell nanoparticles for ratiometric pH sensing.
    Lapresta-Fernández A; Doussineau T; Dutz S; Steiniger F; Moro AJ; Mohr GJ
    Nanotechnology; 2011 Oct; 22(41):415501. PubMed ID: 21926455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simple detection of residual enrofloxacin in meat products using microparticles and biochips.
    Ha MS; Chung MS; Bae DH
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2016 May; 33(5):817-23. PubMed ID: 27093105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magneto immunoassays for Plasmodium falciparum histidine-rich protein 2 related to malaria based on magnetic nanoparticles.
    Castilho Mde S; Laube T; Yamanaka H; Alegret S; Pividori MI
    Anal Chem; 2011 Jul; 83(14):5570-7. PubMed ID: 21619038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Core-shell silica nanoparticles synthesized for quantitative study of DNA cleavage by laser-induced fluorescence microscopy.
    Ko J; Lim HB
    Anal Bioanal Chem; 2011 Feb; 399(4):1683-8. PubMed ID: 21161515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic nanoparticle based purification and enzyme-linked immunosorbent assay using monoclonal antibody against enrofloxacin.
    Kim NG; Kim MA; Park YI; Jung TS; Son SW; So B; Kang HG
    J Vet Sci; 2015; 16(4):431-7. PubMed ID: 26040610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of an enrofloxacin immunosensor based on label-free electrochemical impedance spectroscopy.
    Wu CC; Lin CH; Wang WS
    Talanta; 2009 Jun; 79(1):62-7. PubMed ID: 19376344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silica nanoparticle-based microfluidic immunosensor with laser-induced fluorescence detection for the quantification of immunoreactive trypsin.
    Seia MA; Stege PW; Pereira SV; De Vito IE; Raba J; Messina GA
    Anal Biochem; 2014 Oct; 463():31-7. PubMed ID: 24983904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A facile approach for cupric ion detection in aqueous media using polyethyleneimine/PMMA core-shell fluorescent nanoparticles.
    Chen J; Zeng F; Wu S; Su J; Zhao J; Tong Z
    Nanotechnology; 2009 Sep; 20(36):365502. PubMed ID: 19687556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic core-shell fluorescent pH ratiometric nanosensor using a Stöber coating method.
    Lapresta-Fernández A; Doussineau T; Moro AJ; Dutz S; Steiniger F; Mohr GJ
    Anal Chim Acta; 2011 Nov; 707(1-2):164-70. PubMed ID: 22027134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel and sensitive method for the detection of enrofloxacin in food using time-resolved fluoroimmunoassay.
    Bin Z; Kai Z; Jue Z; Ke W; Lili Z; Jian J; Biao H
    Toxicol Mech Methods; 2013 Jun; 23(5):323-8. PubMed ID: 23256454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of residues of enrofloxacin and its metabolite ciprofloxacin in chicken muscle by capillary electrophoresis using laser-induced fluorescence detection.
    Horstkötter C; Jiménez-Lozano E; Barrón D; Barbosa J; Blaschke G
    Electrophoresis; 2002 Sep; 23(17):3078-83. PubMed ID: 12207318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A DNA hybridization detection based on fluorescence resonance energy transfer between dye-doped core-shell silica nanoparticles and gold nanoparticles.
    Gao F; Cui P; Chen X; Ye Q; Li M; Wang L
    Analyst; 2011 Oct; 136(19):3973-80. PubMed ID: 21845282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of luminescent Cy5 doped core-shell SFNPs and its application as a near-infrared fluorescent marker.
    He X; Chen J; Wang K; Qin D; Tan W
    Talanta; 2007 Jun; 72(4):1519-26. PubMed ID: 19071792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fluorescence ratiometric nano-pH sensor based on dual-fluorophore-doped silica nanoparticles.
    Gao F; Tang L; Dai L; Wang L
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Jun; 67(2):517-21. PubMed ID: 16965933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of cooking on enrofloxacin residues in chicken tissue.
    Lolo M; Pedreira S; Miranda JM; Vázquez BI; Franco CM; Cepeda A; Fente C
    Food Addit Contam; 2006 Oct; 23(10):988-93. PubMed ID: 16982520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.