BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 23522305)

  • 21. Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates.
    Zengin G; Johansson G; Johansson P; Antosiewicz TJ; Käll M; Shegai T
    Sci Rep; 2013 Oct; 3():3074. PubMed ID: 24166360
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rabi Splitting in Photoluminescence Spectra of Hybrid Systems of Gold Nanorods and J-Aggregates.
    Melnikau D; Esteban R; Savateeva D; Sánchez-Iglesias A; Grzelczak M; Schmidt MK; Liz-Marzán LM; Aizpurua J; Rakovich YP
    J Phys Chem Lett; 2016 Jan; 7(2):354-62. PubMed ID: 26726134
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tunable strong exciton-plasmon-exciton coupling in WS
    Jiang P; Song G; Wang Y; Li C; Wang L; Yu L
    Opt Express; 2019 Jun; 27(12):16613-16623. PubMed ID: 31252885
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Observation of Mode Splitting in Photoluminescence of Individual Plasmonic Nanoparticles Strongly Coupled to Molecular Excitons.
    Wersäll M; Cuadra J; Antosiewicz TJ; Balci S; Shegai T
    Nano Lett; 2017 Jan; 17(1):551-558. PubMed ID: 28005384
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Orientation-Dependent Interaction between the Magnetic Plasmons in Gold Nanocups and the Excitons in WS
    Ai R; Xia X; Zhang H; Chui KK; Wang J
    ACS Nano; 2023 Feb; 17(3):2356-2367. PubMed ID: 36662164
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photoswitchable Rabi Splitting in Hybrid Plasmon-Waveguide Modes.
    Lin L; Wang M; Wei X; Peng X; Xie C; Zheng Y
    Nano Lett; 2016 Dec; 16(12):7655-7663. PubMed ID: 27960522
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tuning the Plexcitonic Optical Chirality Using Discrete Structurally Chiral Plasmonic Nanoparticles.
    Cheng Q; Yang J; Sun L; Liu C; Yang G; Tao Y; Sun X; Zhang B; Xu H; Zhang Q
    Nano Lett; 2023 Dec; 23(23):11376-11384. PubMed ID: 38038244
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Greatly Enhanced Plasmon-Exciton Coupling in Si/WS
    Deng F; Huang H; Chen JD; Liu S; Pang H; He X; Lan S
    Nano Lett; 2022 Jan; 22(1):220-228. PubMed ID: 34962400
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Room-Temperature Strong Coupling of CdSe Nanoplatelets and Plasmonic Hole Arrays.
    Winkler JM; Rabouw FT; Rossinelli AA; Jayanti SV; McPeak KM; Kim DK; le Feber B; Prins F; Norris DJ
    Nano Lett; 2019 Jan; 19(1):108-115. PubMed ID: 30516054
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fine-tuning of polariton energies in a tailored plasmon cavity and J-aggregates hybrid system.
    Liang K; Guo J; Huang Y; Yu L
    Nanoscale; 2020 Nov; 12(45):23069-23076. PubMed ID: 33179685
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Collective Strong Light-Matter Coupling in Hierarchical Microcavity-Plasmon-Exciton Systems.
    Bisht A; Cuadra J; Wersäll M; Canales A; Antosiewicz TJ; Shegai T
    Nano Lett; 2019 Jan; 19(1):189-196. PubMed ID: 30500202
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Unveiling the Synergy of Coupled Gold Nanoparticles and J-Aggregates in Plexcitonic Systems for Enhanced Photochemical Applications.
    Jumbo-Nogales A; Rao A; Olejniczak A; Grzelczak M; Rakovich Y
    Nanomaterials (Basel); 2023 Dec; 14(1):. PubMed ID: 38202491
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model.
    Jain PK; Eustis S; El-Sayed MA
    J Phys Chem B; 2006 Sep; 110(37):18243-53. PubMed ID: 16970442
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced trapping properties induced by strong LSPR-exciton coupling in plasmonic tweezers.
    Jia P; Shi H; Liu R; Yan X; Sun X
    Opt Express; 2023 Dec; 31(26):44177-44189. PubMed ID: 38178495
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of Gold Nano-Bipyramid Dimensions on Strong Coupling with Excitons of Monolayer MoS
    Lawless J; Hrelescu C; Elliott C; Peters L; McEvoy N; Bradley AL
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):46406-46415. PubMed ID: 32960560
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unified Scattering and Photoluminescence Spectra for Strong Plasmon-Exciton Coupling.
    Niu Y; Xu H; Wei H
    Phys Rev Lett; 2022 Apr; 128(16):167402. PubMed ID: 35522488
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Manipulating the fluorescence of exciton-plasmon hybrids in the strong coupling regime with dual resonance enhancements.
    Qiu YH; Ding SJ; Nan F; Wang Q; Chen K; Hao ZH; Zhou L; Li X; Wang QQ
    Nanoscale; 2019 Nov; 11(45):22033-22041. PubMed ID: 31714554
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Strong coupling of emitters to single plasmonic nanoparticles: exciton-induced transparency and Rabi splitting.
    Pelton M; Storm SD; Leng H
    Nanoscale; 2019 Aug; 11(31):14540-14552. PubMed ID: 31364684
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Diverse axial chiral assemblies of J-aggregates in plexcitonic nanoparticles.
    Guo J; Wu F; Song G; Huang Y; Jiao R; Yu L
    Nanoscale; 2021 Oct; 13(37):15812-15818. PubMed ID: 34528651
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Strong coupling of hybrid states of light and matter in cavity-coupled quantum dot solids.
    Sangeetha A; Reivanth K; Thrupthika T; Ramya S; Nataraj D
    Sci Rep; 2023 Oct; 13(1):16662. PubMed ID: 37794042
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.