These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 23522305)

  • 61. Surface Plasmon Enhanced Strong Exciton-Photon Coupling in Hybrid Inorganic-Organic Perovskite Nanowires.
    Shang Q; Zhang S; Liu Z; Chen J; Yang P; Li C; Li W; Zhang Y; Xiong Q; Liu X; Zhang Q
    Nano Lett; 2018 Jun; 18(6):3335-3343. PubMed ID: 29722986
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Controlled Overgrowth of Five-Fold Concave Nanoparticles into Plasmonic Nanostars and Their Single-Particle Scattering Properties.
    Velázquez-Salazar JJ; Bazán-Díaz L; Zhang Q; Mendoza-Cruz R; Montaño-Priede L; Guisbiers G; Large N; Link S; José-Yacamán M
    ACS Nano; 2019 Sep; 13(9):10113-10128. PubMed ID: 31419107
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Room-Temperature Strong Coupling Between a Single Quantum Dot and a Single Plasmonic Nanoparticle.
    Li JY; Li W; Liu J; Zhong J; Liu R; Chen H; Wang XH
    Nano Lett; 2022 Jun; 22(12):4686-4693. PubMed ID: 35638870
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Resonance energy transfer in self-organized organic/inorganic dendrite structures.
    Melnikau D; Savateeva D; Lesnyak V; Gaponik N; Fernández YN; Vasilevskiy MI; Costa MF; Mochalov KE; Oleinikov V; Rakovich YP
    Nanoscale; 2013 Oct; 5(19):9317-23. PubMed ID: 23949098
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Plasmonic Nanostars as Efficient Broadband Scatterers for Random Lasing.
    Ziegler J; Wörister C; Vidal C; Hrelescu C; Klar TA
    ACS Photonics; 2016 Jun; 3(6):919-923. PubMed ID: 27347494
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Color-tunable emission of quantum dots via strong exciton-plasmon coupling in nanoporous gold structure at room temperature.
    Zhao X; Chen L; Chen J; Shi W; Liu F
    Opt Express; 2016 Sep; 24(18):20219-27. PubMed ID: 27607629
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Excitons and Polarons in Organic Materials.
    Ghosh R; Spano FC
    Acc Chem Res; 2020 Oct; 53(10):2201-2211. PubMed ID: 33035054
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures.
    Vasa P; Pomraenke R; Schwieger S; Mazur YI; Kunets V; Srinivasan P; Johnson E; Kihm JE; Kim DS; Runge E; Salamo G; Lienau C
    Phys Rev Lett; 2008 Sep; 101(11):116801. PubMed ID: 18851308
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Strong exciton-photon coupling in inorganic-organic multiple quantum wells embedded low-Q microcavity.
    Pradeesh K; Baumberg JJ; Prakash GV
    Opt Express; 2009 Nov; 17(24):22171-8. PubMed ID: 19997463
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Plexciton dynamics: exciton-plasmon coupling in a J-aggregate-Au nanoshell complex provides a mechanism for nonlinearity.
    Fofang NT; Grady NK; Fan Z; Govorov AO; Halas NJ
    Nano Lett; 2011 Apr; 11(4):1556-60. PubMed ID: 21417362
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Spatially defined molecular emitters coupled to plasmonic nanoparticle arrays.
    Liu J; Wang W; Wang D; Hu J; Ding W; Schaller RD; Schatz GC; Odom TW
    Proc Natl Acad Sci U S A; 2019 Mar; 116(13):5925-5930. PubMed ID: 30850522
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Orientation-Dependent Exciton-Plasmon Coupling in Embedded Organic/Metal Nanowire Heterostructures.
    Li YJ; Hong Y; Peng Q; Yao J; Zhao YS
    ACS Nano; 2017 Oct; 11(10):10106-10112. PubMed ID: 28930431
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Dynamics of Strong Coupling Between Free Charge Carriers in Organometal Halide Perovskites and Aluminum Plasmonic States.
    Luo Y; Wang H; Zhao LY; Zhang YL
    Front Chem; 2021; 9():818459. PubMed ID: 35096776
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Strong Coupling Between Plasmons and Molecular Excitons in Metal-Organic Frameworks.
    Sample AD; Guan J; Hu J; Reese T; Cherqui CR; Park JE; Freire-Fernández F; Schaller RD; Schatz GC; Odom TW
    Nano Lett; 2021 Sep; 21(18):7775-7780. PubMed ID: 34490777
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Observation and Active Control of a Collective Polariton Mode and Polaritonic Band Gap in Few-Layer WS
    Liu W; Wang Y; Zheng B; Hwang M; Ji Z; Liu G; Li Z; Sorger VJ; Pan A; Agarwal R
    Nano Lett; 2020 Jan; 20(1):790-798. PubMed ID: 31846342
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Active control of the strong coupling regime between porphyrin excitons and surface plasmon polaritons.
    Berrier A; Cools R; Arnold C; Offermans P; Crego-Calama M; Brongersma SH; Gómez-Rivas J
    ACS Nano; 2011 Aug; 5(8):6226-32. PubMed ID: 21776964
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Fluorescent J-aggregates of cyanine dyes: basic research and applications review.
    Bricks JL; Slominskii YL; Panas ID; Demchenko AP
    Methods Appl Fluoresc; 2017 Dec; 6(1):012001. PubMed ID: 28914610
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies.
    Wurtz GA; Evans PR; Hendren W; Atkinson R; Dickson W; Pollard RJ; Zayats AV; Harrison W; Bower C
    Nano Lett; 2007 May; 7(5):1297-303. PubMed ID: 17455984
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Near-infrared exciton-polaritons in strongly coupled single-walled carbon nanotube microcavities.
    Graf A; Tropf L; Zakharko Y; Zaumseil J; Gather MC
    Nat Commun; 2016 Oct; 7():13078. PubMed ID: 27721454
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Plasmon-Enhanced Exciton Delocalization in Squaraine-Type Molecular Aggregates.
    Quenzel T; Timmer D; Gittinger M; Zablocki J; Zheng F; Schiek M; Lützen A; Frauenheim T; Tretiak S; Silies M; Zhong JH; De Sio A; Lienau C
    ACS Nano; 2022 Mar; 16(3):4693-4704. PubMed ID: 35188735
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.