These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 23522549)

  • 1. Effect of needle insertion depth and root canal curvature on irrigant extrusion ex vivo.
    Psimma Z; Boutsioukis C; Kastrinakis E; Vasiliadis L
    J Endod; 2013 Apr; 39(4):521-4. PubMed ID: 23522549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new method for real-time quantification of irrigant extrusion during root canal irrigation ex vivo.
    Psimma Z; Boutsioukis C; Vasiliadis L; Kastrinakis E
    Int Endod J; 2013 Jul; 46(7):619-31. PubMed ID: 23240919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of flow rate and agitation technique on irrigant extrusion ex vivo.
    Boutsioukis C; Psimma Z; Kastrinakis E
    Int Endod J; 2014 May; 47(5):487-96. PubMed ID: 24033564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of apical size and taper on volume of irrigant delivered at working length with apical negative pressure at different root curvatures.
    de Gregorio C; Arias A; Navarrete N; Del Rio V; Oltra E; Cohenca N
    J Endod; 2013 Jan; 39(1):119-24. PubMed ID: 23228270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectrophotometric determination of irrigant extrusion using passive ultrasonic irrigation, EndoActivator, or syringe irrigation.
    Rodríguez-Figueroa C; McClanahan SB; Bowles WR
    J Endod; 2014 Oct; 40(10):1622-6. PubMed ID: 25260734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of needle insertion depth and apical diameter on irrigant extrusion in simulated immature permanent teeth.
    Aksel H; Askerbeyli S; Canbazoglu C; Serper A
    Braz Oral Res; 2014; 28():1-6. PubMed ID: 25271966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of maintaining apical patency on periapical extrusion.
    Lambrianidis T; Tosounidou E; Tzoanopoulou M
    J Endod; 2001 Nov; 27(11):696-8. PubMed ID: 11716084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Apical extrusion of sodium hypochlorite using different root canal irrigation systems.
    Mitchell RP; Baumgartner JC; Sedgley CM
    J Endod; 2011 Dec; 37(12):1677-81. PubMed ID: 22099904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Weight of apically extruded debris following use of two canal instrumentation techniques and two designs of irrigation needles.
    Yeter KY; Evcil MS; Ayranci LB; Ersoy I
    Int Endod J; 2013 Sep; 46(9):795-9. PubMed ID: 23441844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of root canal dimensions, injection rate, and needle design on the apical extrusion of an irrigant: an in vitro study.
    Chang JW; Cheung AW; Cheung GS
    J Investig Clin Dent; 2015 Aug; 6(3):221-7. PubMed ID: 25047790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Debris and irrigant extrusion potential of 2 rotary systems and irrigation needles.
    Altundasar E; Nagas E; Uyanik O; Serper A
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2011 Oct; 112(4):e31-5. PubMed ID: 21778084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between the size of patency file and apical extrusion of sodium hypochlorite.
    Camoes IC; Salles MR; Fernando MV; Freitas LF; Gomes CC
    Indian J Dent Res; 2009; 20(4):426-30. PubMed ID: 20139565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of irrigant flow in the root canal using different needle types by an unsteady computational fluid dynamics model.
    Boutsioukis C; Verhaagen B; Versluis M; Kastrinakis E; Wesselink PR; van der Sluis LW
    J Endod; 2010 May; 36(5):875-9. PubMed ID: 20416437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative safety of various intracanal irrigation systems.
    Desai P; Himel V
    J Endod; 2009 Apr; 35(4):545-9. PubMed ID: 19345802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Apical pressure and extent of irrigant flow beyond the needle tip during positive-pressure irrigation in an in vitro root canal model.
    Park E; Shen Y; Khakpour M; Haapasalo M
    J Endod; 2013 Apr; 39(4):511-5. PubMed ID: 23522547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of Apical Extrusion during Root Canal Irrigation with the Novel GentleWave System in a Simulated Apical Environment.
    Charara K; Friedman S; Sherman A; Kishen A; Malkhassian G; Khakpour M; Basrani B
    J Endod; 2016 Jan; 42(1):135-9. PubMed ID: 26547720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An ex vivo evaluation of a new root canal irrigation technique with intracanal aspiration.
    Fukumoto Y; Kikuchi I; Yoshioka T; Kobayashi C; Suda H
    Int Endod J; 2006 Feb; 39(2):93-9. PubMed ID: 16454788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Irrigant flow beyond the insertion depth of an ultrasonically oscillating file in straight and curved root canals: visualization and cleaning efficacy.
    Malki M; Verhaagen B; Jiang LM; Nehme W; Naaman A; Versluis M; Wesselink P; van der Sluis L
    J Endod; 2012 May; 38(5):657-61. PubMed ID: 22515896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncontrolled Removal of Dentin during In Vitro Ultrasonic Irrigant Activation.
    Boutsioukis C; Tzimpoulas N
    J Endod; 2016 Feb; 42(2):289-93. PubMed ID: 26813418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of the Volume of Root Canal Irrigant Collected by 2 Negative Pressure Needles at Different Flow Rates of Delivery.
    Moreno D; Conde AJ; Loroño G; Adorno CG; Estevez R; Cisneros R
    J Endod; 2018 May; 44(5):838-841. PubMed ID: 29571908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.