These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 23522800)

  • 1. A programmable microenvironment for cellular studies via microfluidics-generated double emulsions.
    Zhang Y; Ho YP; Chiu YL; Chan HF; Chlebina B; Schuhmann T; You L; Leong KW
    Biomaterials; 2013 Jun; 34(19):4564-72. PubMed ID: 23522800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput screening of microchip-synthesized genes in programmable double-emulsion droplets.
    Chan HF; Ma S; Tian J; Leong KW
    Nanoscale; 2017 Mar; 9(10):3485-3495. PubMed ID: 28239692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Rapid generation of double-layer emulsion droplets based on microfluidic chip].
    Bai L; Yuan H; Tu R; Wang Q; Hua E
    Sheng Wu Gong Cheng Xue Bao; 2020 Jul; 36(7):1405-1413. PubMed ID: 32748598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic preparation of water-in-oil-in-water emulsions with an ultra-thin oil phase layer.
    Saeki D; Sugiura S; Kanamori T; Sato S; Ichikawa S
    Lab Chip; 2010 Feb; 10(3):357-62. PubMed ID: 20091008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic preparation and self diffusion PFG-NMR analysis of monodisperse water-in-oil-in-water double emulsions.
    Hughes E; Maan AA; Acquistapace S; Burbidge A; Johns ML; Gunes DZ; Clausen P; Syrbe A; Hugo J; Schroen K; Miralles V; Atkins T; Gray R; Homewood P; Zick K
    J Colloid Interface Sci; 2013 Jan; 389(1):147-56. PubMed ID: 22964093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchical Biomolecular Emulsions Using 3-D Microfluidics with Uniform Surface Chemistry.
    Toprakcioglu Z; Levin A; Knowles TPJ
    Biomacromolecules; 2017 Nov; 18(11):3642-3651. PubMed ID: 28959882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A multi-module microfluidic platform for continuous pre-concentration of water-soluble ions and separation of oil droplets from oil-in-water (O/W) emulsions using a DC-biased AC electrokinetic technique.
    Das D; Phan DT; Zhao Y; Kang Y; Chan V; Yang C
    Electrophoresis; 2017 Mar; 38(5):645-652. PubMed ID: 27935087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-volume production of single and compound emulsions in a microfluidic parallelization arrangement coupled with coaxial annular world-to-chip interfaces.
    Nisisako T; Ando T; Hatsuzawa T
    Lab Chip; 2012 Sep; 12(18):3426-35. PubMed ID: 22806835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro compartmentalization by double emulsions: sorting and gene enrichment by fluorescence activated cell sorting.
    Bernath K; Hai M; Mastrobattista E; Griffiths AD; Magdassi S; Tawfik DS
    Anal Biochem; 2004 Feb; 325(1):151-7. PubMed ID: 14715296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Double emulsions with controlled morphology by microgel scaffolding.
    Thiele J; Seiffert S
    Lab Chip; 2011 Sep; 11(18):3188-92. PubMed ID: 21796282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystallizable W/O/W double emulsions made with milk fat: Formulation, stability and release properties.
    Herzi S; Essafi W
    Food Res Int; 2019 Feb; 116():145-156. PubMed ID: 30716931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimisation of bacterial release from a stable microfluidic-generated water-in-oil-in-water emulsion.
    Mohd Isa NS; El Kadri H; Vigolo D; Gkatzionis K
    RSC Adv; 2021 Feb; 11(13):7738-7749. PubMed ID: 35423274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deformation of double emulsions under conditions of flow cytometry hydrodynamic focusing.
    Ma S; Huck WT; Balabani S
    Lab Chip; 2015 Nov; 15(22):4291-301. PubMed ID: 26394745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cross-talk between emulsion drops: how are hydrophilic reagents transported across oil phases?
    Etienne G; Vian A; Biočanin M; Deplancke B; Amstad E
    Lab Chip; 2018 Dec; 18(24):3903-3912. PubMed ID: 30465575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated microfluidic system with simultaneous emulsion generation and concentration.
    Koppula KS; Fan R; Veerapalli KR; Wan J
    J Colloid Interface Sci; 2016 Mar; 466():162-7. PubMed ID: 26722797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different magnesium release profiles from W/O/W emulsions based on crystallized oils.
    Herzi S; Essafi W
    J Colloid Interface Sci; 2018 Jan; 509():178-188. PubMed ID: 28898738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controllable preparation of monodisperse O/W and W/O emulsions in the same microfluidic device.
    Xu JH; Li SW; Tan J; Wang YJ; Luo GS
    Langmuir; 2006 Sep; 22(19):7943-6. PubMed ID: 16952223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent progress in the synthesis of all-aqueous two-phase droplets using microfluidic approaches.
    Daradmare S; Lee CS
    Colloids Surf B Biointerfaces; 2022 Nov; 219():112795. PubMed ID: 36049253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rheology and stability of water-in-oil-in-water multiple emulsions containing Span 83 and Tween 80.
    Jiao J; Burgess DJ
    AAPS PharmSci; 2003; 5(1):E7. PubMed ID: 12713279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The microenvironment of double emulsions in rectangular microchannels.
    Ma S; Sherwood JM; Huck WT; Balabani S
    Lab Chip; 2015 May; 15(10):2327-34. PubMed ID: 25900541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.