BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

453 related articles for article (PubMed ID: 23523260)

  • 1. The emerging CHO systems biology era: harnessing the 'omics revolution for biotechnology.
    Kildegaard HF; Baycin-Hizal D; Lewis NE; Betenbaugh MJ
    Curr Opin Biotechnol; 2013 Dec; 24(6):1102-7. PubMed ID: 23523260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mammalian Systems Biotechnology Reveals Global Cellular Adaptations in a Recombinant CHO Cell Line.
    Yusufi FNK; Lakshmanan M; Ho YS; Loo BLW; Ariyaratne P; Yang Y; Ng SK; Tan TRM; Yeo HC; Lim HL; Ng SW; Hiu AP; Chow CP; Wan C; Chen S; Teo G; Song G; Chin JX; Ruan X; Sung KWK; Hu WS; Yap MGS; Bardor M; Nagarajan N; Lee DY
    Cell Syst; 2017 May; 4(5):530-542.e6. PubMed ID: 28544881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CHO-Omics Review: The Impact of Current and Emerging Technologies on Chinese Hamster Ovary Based Bioproduction.
    Stolfa G; Smonskey MT; Boniface R; Hachmann AB; Gulde P; Joshi AD; Pierce AP; Jacobia SJ; Campbell A
    Biotechnol J; 2018 Mar; 13(3):e1700227. PubMed ID: 29072373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The 'Omics Revolution in CHO Biology: Roadmap to Improved CHO Productivity.
    Dahodwala H; Sharfstein ST
    Methods Mol Biol; 2017; 1603():153-168. PubMed ID: 28493129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An 'omics approach towards CHO cell engineering.
    Datta P; Linhardt RJ; Sharfstein ST
    Biotechnol Bioeng; 2013 May; 110(5):1255-71. PubMed ID: 23322664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systems Biology of Metabolism.
    Nielsen J
    Annu Rev Biochem; 2017 Jun; 86():245-275. PubMed ID: 28301739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematically gap-filling the genome-scale metabolic model of CHO cells.
    Fouladiha H; Marashi SA; Li S; Li Z; Masson HO; Vaziri B; Lewis NE
    Biotechnol Lett; 2021 Jan; 43(1):73-87. PubMed ID: 33040240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-omics profiling of CHO parental hosts reveals cell line-specific variations in bioprocessing traits.
    Lakshmanan M; Kok YJ; Lee AP; Kyriakopoulos S; Lim HL; Teo G; Poh SL; Tang WQ; Hong J; Tan AH; Bi X; Ho YS; Zhang P; Ng SK; Lee DY
    Biotechnol Bioeng; 2019 Sep; 116(9):2117-2129. PubMed ID: 31066037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CHO cells in biotechnology for production of recombinant proteins: current state and further potential.
    Kim JY; Kim YG; Lee GM
    Appl Microbiol Biotechnol; 2012 Feb; 93(3):917-30. PubMed ID: 22159888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The emerging role of systems biology for engineering protein production in CHO cells.
    Kuo CC; Chiang AW; Shamie I; Samoudi M; Gutierrez JM; Lewis NE
    Curr Opin Biotechnol; 2018 Jun; 51():64-69. PubMed ID: 29223005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of a curated genome-scale metabolic model of CHO DG44 to an industrial fed-batch process.
    Calmels C; McCann A; Malphettes L; Andersen MR
    Metab Eng; 2019 Jan; 51():9-19. PubMed ID: 30227251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Systems biology for industrial biotechnology].
    Zheng X; Zheng P; Sun J
    Sheng Wu Gong Cheng Xue Bao; 2019 Oct; 35(10):1955-1973. PubMed ID: 31668041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of multi-omics techniques for bioprocess design and optimization in chinese hamster ovary cells.
    Farrell A; McLoughlin N; Milne JJ; Marison IW; Bones J
    J Proteome Res; 2014 Jul; 13(7):3144-59. PubMed ID: 24915626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing eukaryotic cell hosts for protein production through systems biotechnology and genome-scale modeling.
    Gutierrez JM; Lewis NE
    Biotechnol J; 2015 Jul; 10(7):939-49. PubMed ID: 26099571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The art of CHO cell engineering: A comprehensive retrospect and future perspectives.
    Fischer S; Handrick R; Otte K
    Biotechnol Adv; 2015 Dec; 33(8):1878-96. PubMed ID: 26523782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative intracellular flux modeling and applications in biotherapeutic development and production using CHO cell cultures.
    Huang Z; Lee DY; Yoon S
    Biotechnol Bioeng; 2017 Dec; 114(12):2717-2728. PubMed ID: 28710856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A global RNA-seq-driven analysis of CHO host and production cell lines reveals distinct differential expression patterns of genes contributing to recombinant antibody glycosylation.
    Könitzer JD; Müller MM; Leparc G; Pauers M; Bechmann J; Schulz P; Schaub J; Enenkel B; Hildebrandt T; Hampel M; Tolstrup AB
    Biotechnol J; 2015 Sep; 10(9):1412-23. PubMed ID: 26212696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A functional high-content miRNA screen identifies miR-30 family to boost recombinant protein production in CHO cells.
    Fischer S; Buck T; Wagner A; Ehrhart C; Giancaterino J; Mang S; Schad M; Mathias S; Aschrafi A; Handrick R; Otte K
    Biotechnol J; 2014 Oct; 9(10):1279-92. PubMed ID: 25061012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycoengineering in CHO Cells: Advances in Systems Biology.
    Tejwani V; Andersen MR; Nam JH; Sharfstein ST
    Biotechnol J; 2018 Mar; 13(3):e1700234. PubMed ID: 29316325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell engineering and cultivation of chinese hamster ovary (CHO) cells.
    Omasa T; Onitsuka M; Kim WD
    Curr Pharm Biotechnol; 2010 Apr; 11(3):233-40. PubMed ID: 20210750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.