BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 23523314)

  • 1. CC bond formation using ThDP-dependent lyases.
    Müller M; Sprenger GA; Pohl M
    Curr Opin Chem Biol; 2013 Apr; 17(2):261-70. PubMed ID: 23523314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thiamin-diphosphate-dependent enzymes: new aspects of asymmetric C-C bond formation.
    Pohl M; Lingen B; Müller M
    Chemistry; 2002 Dec; 8(23):5288-95. PubMed ID: 12432496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asymmetric Stetter reactions catalyzed by thiamine diphosphate-dependent enzymes.
    Kasparyan E; Richter M; Dresen C; Walter LS; Fuchs G; Leeper FJ; Wacker T; Andrade SL; Kolter G; Pohl M; Müller M
    Appl Microbiol Biotechnol; 2014 Dec; 98(23):9681-90. PubMed ID: 24957249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding of the coenzyme and formation of the transketolase active center.
    Kochetov G; Sevostyanova IA
    IUBMB Life; 2005 Jul; 57(7):491-7. PubMed ID: 16081370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New Stetter reactions catalyzed by thiamine diphosphate dependent MenD from E. coli.
    Beigi M; Waltzer S; Zarei M; Müller M
    J Biotechnol; 2014 Dec; 191():64-8. PubMed ID: 25111035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering stereoselectivity of ThDP-dependent enzymes.
    Hailes HC; Rother D; Müller M; Westphal R; Ward JM; Pleiss J; Vogel C; Pohl M
    FEBS J; 2013 Dec; 280(24):6374-94. PubMed ID: 24034356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New function of the amino group of thiamine diphosphate in thiamine catalysis.
    Meshalkina LE; Kochetov GA; Hübner G; Tittmann K; Golbik R
    Biochemistry (Mosc); 2009 Mar; 74(3):293-300. PubMed ID: 19364324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feasibility of gas/solid carboligation: conversion of benzaldehyde to benzoin using thiamine diphosphate-dependent enzymes.
    Mikolajek R; Spiess AC; Büchs J
    J Biotechnol; 2007 May; 129(4):723-5. PubMed ID: 17399835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new perspective on thiamine catalysis.
    Pohl M; Sprenger GA; Müller M
    Curr Opin Biotechnol; 2004 Aug; 15(4):335-42. PubMed ID: 15296931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystallography and mutagenesis of transketolase: mechanistic implications for enzymatic thiamin catalysis.
    Schneider G; Lindqvist Y
    Biochim Biophys Acta; 1998 Jun; 1385(2):387-98. PubMed ID: 9655943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and mechanism of the ThDP-dependent benzaldehyde lyase from Pseudomonas fluorescens.
    Mosbacher TG; Mueller M; Schulz GE
    FEBS J; 2005 Dec; 272(23):6067-76. PubMed ID: 16302970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and Mutagenesis Studies of the Thiamine-Dependent, Ketone-Accepting YerE from Pseudomonas protegens.
    Hampel S; Steitz JP; Baierl A; Lehwald P; Wiesli L; Richter M; Fries A; Pohl M; Schneider G; Dobritzsch D; Müller M
    Chembiochem; 2018 Nov; 19(21):2283-2292. PubMed ID: 30101542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thiamine biosensor based on oxidative trapping of enzyme-substrate intermediate.
    Halma M; Doumèche B; Hecquet L; Prévot V; Mousty C; Charmantray F
    Biosens Bioelectron; 2017 Jan; 87():850-857. PubMed ID: 27657847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of donor substrate on kinetic parameters of thiamine diphosphate binding to transketolase.
    Ospanov RV; Kochetov GA; Kurganov BI
    Biochemistry (Mosc); 2007 Jan; 72(1):84-92. PubMed ID: 17309441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Propioin synthesis using thiamine diphosphate-dependent enzymes.
    Mikolajek RJ; Spiess AC; Pohl M; Büchs J
    Biotechnol Prog; 2009; 25(1):132-8. PubMed ID: 19224568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extended substrate range of thiamine diphosphate-dependent MenD enzyme by coupling of two C-C-bonding reactions.
    Schapfl M; Baier S; Fries A; Ferlaino S; Waltzer S; Müller M; Sprenger GA
    Appl Microbiol Biotechnol; 2018 Oct; 102(19):8359-8372. PubMed ID: 30062480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous identification of reaction and inactivation kinetics of an enzyme-catalyzed carboligation.
    Ohs R; Leipnitz M; Schöpping M; Spiess AC
    Biotechnol Prog; 2018 Sep; 34(5):1081-1092. PubMed ID: 29885040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into the Thiamine Diphosphate Enzyme Activation Mechanism: Computational Model for Transketolase Using a Quantum Mechanical/Molecular Mechanical Method.
    Nauton L; Hélaine V; Théry V; Hecquet L
    Biochemistry; 2016 Apr; 55(14):2144-52. PubMed ID: 26998737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intramolecular Stereoselective Stetter Reaction Catalyzed by Benzaldehyde Lyase.
    Chen X; Wang Z; Lou Y; Peng Y; Zhu Q; Xu J; Wu Q
    Angew Chem Int Ed Engl; 2021 Apr; 60(17):9326-9329. PubMed ID: 33559383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Snapshot of a key intermediate in enzymatic thiamin catalysis: crystal structure of the alpha-carbanion of (alpha,beta-dihydroxyethyl)-thiamin diphosphate in the active site of transketolase from Saccharomyces cerevisiae.
    Fiedler E; Thorell S; Sandalova T; Golbik R; König S; Schneider G
    Proc Natl Acad Sci U S A; 2002 Jan; 99(2):591-5. PubMed ID: 11773632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.