BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 23523709)

  • 1. Modulation of testosterone-dependent male sexual behavior and the associated neuroplasticity.
    Charlier TD; Seredynski AL; Niessen NA; Balthazart J
    Gen Comp Endocrinol; 2013 Sep; 190():24-33. PubMed ID: 23523709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specific activation of estrogen receptor alpha and beta enhances male sexual behavior and neuroplasticity in male Japanese quail.
    Seredynski AL; Ball GF; Balthazart J; Charlier TD
    PLoS One; 2011 Apr; 6(4):e18627. PubMed ID: 21533185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Steroid receptor coactivator 2 modulates steroid-dependent male sexual behavior and neuroplasticity in Japanese quail (Coturnix japonica).
    Niessen NA; Balthazart J; Ball GF; Charlier TD
    J Neurochem; 2011 Nov; 119(3):579-93. PubMed ID: 21854393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of steroid receptor coactivator-1 blocks estrogen and androgen action on male sex behavior and associated brain plasticity.
    Charlier TD; Ball GF; Balthazart J
    J Neurosci; 2005 Jan; 25(4):906-13. PubMed ID: 15673671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting steroid receptor coactivator-1 expression with locked nucleic acids antisense reveals different thresholds for the hormonal regulation of male sexual behavior in relation to aromatase activity and protein expression.
    Charlier TD; Harada N; Ball GF; Balthazart J
    Behav Brain Res; 2006 Sep; 172(2):333-43. PubMed ID: 16797739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Steroid-induced plasticity in the sexually dimorphic vasotocinergic innervation of the avian brain: behavioral implications.
    Panzica GC; Aste N; Castagna C; Viglietti-Panzica C; Balthazart J
    Brain Res Brain Res Rev; 2001 Nov; 37(1-3):178-200. PubMed ID: 11744086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-specific effects of aromatase inhibition on the activation of male sexual behavior in male Japanese quail (Coturnix japonica).
    de Bournonville MP; Vandries LM; Ball GF; Balthazart J; Cornil CA
    Horm Behav; 2019 Feb; 108():42-49. PubMed ID: 30605622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential control of appetitive and consummatory sexual behavior by neuroestrogens in male quail.
    Cornil CA; Ball GF; Balthazart J
    Horm Behav; 2018 Aug; 104():15-31. PubMed ID: 29452074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The sexually dimorphic medial preoptic nucleus of quail: a key brain area mediating steroid action on male sexual behavior.
    Panzica GC; Viglietti-Panzica C; Balthazart J
    Front Neuroendocrinol; 1996 Jan; 17(1):51-125. PubMed ID: 8788569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective activation of estrogen receptor alpha in Japanese quail embryos affects reproductive organ differentiation but not the male sexual behavior or the parvocellular vasotocin system.
    Mattsson A; Mura E; Brunström B; Panzica G; Halldin K
    Gen Comp Endocrinol; 2008; 159(2-3):150-7. PubMed ID: 18805421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sex differences in the expression of sex steroid receptor mRNA in the quail brain.
    Voigt C; Ball GF; Balthazart J
    J Neuroendocrinol; 2009 Dec; 21(12):1045-62. PubMed ID: 19845834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aromatase inhibition blocks the expression of sexually-motivated cloacal gland movements in male quail.
    Taziaux M; Cornil CA; Balthazart J
    Behav Processes; 2004 Nov; 67(3):461-9. PubMed ID: 15518995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct neuroendocrine mechanisms control neural activity underlying sex differences in sexual motivation and performance.
    Balthazart J; de Meaultsart CC; Ball GF; Cornil CA
    Eur J Neurosci; 2013 Mar; 37(5):735-42. PubMed ID: 23282041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of testosterone and its metabolites on aromatase-immunoreactive cells in the quail brain: relationship with the activation of male reproductive behavior.
    Balthazart J; Foidart A; Absil P; Harada N
    J Steroid Biochem Mol Biol; 1996 Jan; 56(1-6 Spec No):185-200. PubMed ID: 8603040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sex steroid-induced neuroplasticity and behavioral activation in birds.
    Balthazart J; Charlier TD; Barker JM; Yamamura T; Ball GF
    Eur J Neurosci; 2010 Dec; 32(12):2116-32. PubMed ID: 21143666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. C-fos down-regulation inhibits testosterone-dependent male sexual behavior and the associated learning.
    Niessen NA; Balthazart J; Ball GF; Charlier TD
    Eur J Neurosci; 2013 Nov; 38(9):3325-37. PubMed ID: 23895306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of brain testosterone implants on appetitive and consummatory components of male sexual behavior in Japanese quail.
    Riters LV; Absil P; Balthazart J
    Brain Res Bull; 1998 Sep; 47(1):69-79. PubMed ID: 9766392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Steroid metabolism in the brain: From bird watching to molecular biology, a personal journey.
    Balthazart J
    Horm Behav; 2017 Jul; 93():137-150. PubMed ID: 28576650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Appetitive and consummatory male sexual behavior in Japanese quail are differentially regulated by subregions of the preoptic medial nucleus.
    Balthazart J; Absil P; Gérard M; Appeltants D; Ball GF
    J Neurosci; 1998 Aug; 18(16):6512-27. PubMed ID: 9698339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasticity in the expression of the steroid receptor coactivator 1 in the Japanese quail brain: effect of sex, testosterone, stress and time of the day.
    Charlier TD; Ball GF; Balthazart J
    Neuroscience; 2006 Jul; 140(4):1381-94. PubMed ID: 16650617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.