BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 23523712)

  • 1. Effect of puffing intensity on cigarette smoke yields.
    Purkis SW; Troude V; Hill CA
    Regul Toxicol Pharmacol; 2013 Jun; 66(1):72-82. PubMed ID: 23523712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Some consequences of using cigarette machine smoking regimes with different intensities on smoke yields and their variability.
    Purkis SW; Cahours X; Rey M; Teillet B; Troude V; Verron T
    Regul Toxicol Pharmacol; 2011 Mar; 59(2):293-309. PubMed ID: 21074590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cigarette Filter Ventilation and Smoking Protocol Influence Aldehyde Smoke Yields.
    Pauwels CGGM; Klerx WNM; Pennings JLA; Boots AW; van Schooten FJ; Opperhuizen A; Talhout R
    Chem Res Toxicol; 2018 Jun; 31(6):462-471. PubMed ID: 29727173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of mouth level exposure to smoke constituents of cigarettes with different tar levels using filter analysis.
    Hyodo T; Minagawa K; Inoue T; Fujimoto J; Minami N; Bito R; Mikita A
    Regul Toxicol Pharmacol; 2013 Dec; 67(3):486-98. PubMed ID: 24113618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristic Human Individual Puffing Profiles Can Generate More TNCO than ISO and Health Canada Regimes on Smoking Machine When the Same Brand Is Smoked.
    Pauwels CGGM; Boots AW; Visser WF; Pennings JLA; Talhout R; Schooten FV; Opperhuizen A
    Int J Environ Res Public Health; 2020 May; 17(9):. PubMed ID: 32384697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cigar burning under different smoking intensities and effects on emissions.
    Dethloff O; Mueller C; Cahours X; Colard S
    Regul Toxicol Pharmacol; 2017 Dec; 91():190-196. PubMed ID: 29074275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduced exposure evaluation of an Electrically Heated Cigarette Smoking System. Part 2: Smoke chemistry and in vitro toxicological evaluation using smoking regimens reflecting human puffing behavior.
    Zenzen V; Diekmann J; Gerstenberg B; Weber S; Wittke S; Schorp MK
    Regul Toxicol Pharmacol; 2012 Nov; 64(2 Suppl):S11-34. PubMed ID: 22922180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aspects of the design protocol and the statistical methods for analysis of tar, nicotine and carbon monoxide yields in cigarette smoke that can affect the measurement variability within collaborative studies.
    Verron T; Czechowicz M; Heller WD; Cahours X; Purkis SW
    Regul Toxicol Pharmacol; 2013 Nov; 67(2):252-65. PubMed ID: 23959062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multivariate Statistical Analysis of Cigarette Design Feature Influence on ISO TNCO Yields.
    Agnew-Heard KA; Lancaster VA; Bravo R; Watson C; Walters MJ; Holman MR
    Chem Res Toxicol; 2016 Jun; 29(6):1051-63. PubMed ID: 27222918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhaled smoke volume and puff indices with cigarettes of different tar and nicotine levels.
    Woodman G; Newman SP; Pavia D; Clarke SW
    Eur J Respir Dis; 1987 Mar; 70(3):187-92. PubMed ID: 3569450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dependence of tar, nicotine and carbon monoxide yields on physical parameters: implications for exposure, emissions control and monitoring.
    Stephens WE
    Tob Control; 2007 Jun; 16(3):170-6. PubMed ID: 17565136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Limitations in the characterisation of cigarette products using different machine smoking regimes.
    Purkis SW; Troude V; DuputiƩ G; Tessier C
    Regul Toxicol Pharmacol; 2010 Dec; 58(3):501-15. PubMed ID: 20807558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of tobacco ingredients on smoke chemistry. Part I: Flavourings and additives.
    Baker RR; Pereira da Silva JR; Smith G
    Food Chem Toxicol; 2004; 42 Suppl():S3-37. PubMed ID: 15072836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-regulation of smoking intensity. Smoke yields of the low-nicotine, low-'tar' cigarettes.
    Djordjevic MV; Fan J; Ferguson S; Hoffmann D
    Carcinogenesis; 1995 Sep; 16(9):2015-21. PubMed ID: 7554048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous on-line size and chemical analysis of gas phase and particulate phase of cigarette mainstream smoke.
    Adam T; McAughey J; McGrath C; Mocker C; Zimmermann R
    Anal Bioanal Chem; 2009 Jun; 394(4):1193-203. PubMed ID: 19381615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The linear relationship between cigarette tar and nicotine yields: regulatory implications for smoke constituent ratios.
    St Charles FK; Cook CJ; Clayton PM
    Regul Toxicol Pharmacol; 2011 Feb; 59(1):143-8. PubMed ID: 21216263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large Cigars: Smoking Topography and Toxicant Exposure.
    Rosenberry ZR; Pickworth WB; Koszowski B
    Nicotine Tob Res; 2018 Jan; 20(2):183-191. PubMed ID: 27798089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nicotine and carbon monoxide exposure from inhalation of cigarillo smoke.
    Koszowski B; Rosenberry ZR; Kanu A; Viray LC; Potts JL; Pickworth WB
    Pharmacol Biochem Behav; 2015 Dec; 139(Pt A):7-14. PubMed ID: 26459155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine-smoking studies of cigarette filter color to estimate tar yield by visual assessment and through the use of a colorimeter.
    Morton MJ; Williams DL; Hjorth HB; Smith JH
    Regul Toxicol Pharmacol; 2010 Apr; 56(3):321-31. PubMed ID: 19879915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of cigarette filter ventilation on smokers' mouth level exposure to tar and nicotine.
    Caraway JW; Ashley M; Bowman SA; Chen P; Errington G; Prasad K; Nelson PR; Shepperd CJ; Fearon IM
    Regul Toxicol Pharmacol; 2017 Dec; 91():235-239. PubMed ID: 29097238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.