These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 23523722)

  • 1. Effect of freeze-thawing cycles on aging behavior of phenanthrene, pyrene and their mixture in soil.
    Zhao Q; Xing B; Tai P; Yang K; Li H; Zhang L; Lin G; Li P
    Sci Total Environ; 2013 May; 452-453():246-52. PubMed ID: 23523722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of freeze-thawing cycles on soil aging behavior of individually spiked phenanthrene and pyrene at different concentrations.
    Zhao Q; Xing B; Tai P; Li H; Song L; Zhang L; Li P
    Sci Total Environ; 2013 Feb; 444():311-9. PubMed ID: 23280288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of aging and freeze-thawing on extractability of pyrene in soil.
    Zhao Q; Li P; Stagnitti F; Ye J; Dong D; Zhang Y; Li P
    Chemosphere; 2009 Jul; 76(4):447-52. PubMed ID: 19403156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ageing behavior of phenanthrene and pyrene in soils: a study using sodium dodecylbenzenesulfonate extraction.
    Zhao Q; Weise L; Li P; Yang K; Zhang Y; Dong D; Li P; Li X
    J Hazard Mater; 2010 Nov; 183(1-3):881-7. PubMed ID: 20800355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced solubilization and removal of naphthalene and phenanthrene by cyclodextrins from two contaminated soils.
    Badr T; Hanna K; de Brauer C
    J Hazard Mater; 2004 Aug; 112(3):215-23. PubMed ID: 15302442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of freeze-thawing cycles on desorption behaviors of PAH-contaminated soil in the presence of a biosurfactant: a case study in western Canada.
    Yao Y; Huang GH; An CJ; Cheng GH; Wei J
    Environ Sci Process Impacts; 2017 Jun; 19(6):874-882. PubMed ID: 28548173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of microbial accessibility of carbon-14-phenanthrene in soil in the presence of pyrene or benzo[a]pyrene using an aqueous cyclodextrin extraction technique.
    Papadopoulos A; Reid BJ; Semple KT
    J Environ Qual; 2007; 36(5):1385-91. PubMed ID: 17785278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of lipids on the sorption of diuron and phenanthrene in soils.
    Ahangar AG; Smernik RJ; Kookana RS; Chittleborough DJ
    Chemosphere; 2009 Feb; 74(8):1062-8. PubMed ID: 19059629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of exotic and inherent dissolved organic matter on sorption of phenanthrene by soils.
    Gao Y; Xiong W; Ling W; Wang X; Li Q
    J Hazard Mater; 2007 Feb; 140(1-2):138-44. PubMed ID: 16875776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sorption of phenanthrene by soils contaminated with heavy metals.
    Gao Y; Xiong W; Ling W; Xu J
    Chemosphere; 2006 Nov; 65(8):1355-61. PubMed ID: 16735048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concentration- and time-dependent sorption and desorption behavior of phenanthrene to geosorbents with varying organic matter composition.
    Xu X; Sun H; Simpson MJ
    Chemosphere; 2010 May; 79(8):772-8. PubMed ID: 20381112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced dissipation of phenanthrene and pyrene in spiked soils by combined plants cultivation.
    Xu SY; Chen YX; Wu WX; Wang KX; Lin Q; Liang XQ
    Sci Total Environ; 2006 Jun; 363(1-3):206-15. PubMed ID: 15985280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the use of a freeze-dried versus an air-dried soil humic acid as a surrogate of soil organic matter for contaminant sorption.
    Hung WN; Lin TF; Chiu CH; Chiou CT
    Environ Pollut; 2012 Jan; 160(1):125-9. PubMed ID: 22035935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uptake and accumulation of phenanthrene and pyrene in spiked soils by Ryegrass (Lolium perenne L.).
    Xu SY; Chen YX; Lin Q; Wu WX; Xue SG; Shen CF
    J Environ Sci (China); 2005; 17(5):817-22. PubMed ID: 16313010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fate and behaviour of phenanthrene in the natural and artificial soils.
    Hofman J; Rhodes A; Semple KT
    Environ Pollut; 2008 Mar; 152(2):468-75. PubMed ID: 17850942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation of phenanthrene and pyrene in spiked soils by single and combined plants cultivation.
    Cheema SA; Imran Khan M; Shen C; Tang X; Farooq M; Chen L; Zhang C; Chen Y
    J Hazard Mater; 2010 May; 177(1-3):384-9. PubMed ID: 20079966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of pyrene combination state in soils on its treatment efficiency by Fenton oxidation.
    Sun HW; Yan QS
    J Environ Manage; 2008 Aug; 88(3):556-63. PubMed ID: 17517464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of pyrene bioavailability in soil by mild hydroxypropyl-β-cyclodextrin extraction.
    Khan MI; Cheema SA; Shen C; Zhang C; Tang X; Malik Z; Chen X; Chen Y
    Arch Environ Contam Toxicol; 2011 Jan; 60(1):107-15. PubMed ID: 20437042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of surfactant sorption on the removal of phenanthrene from contaminated soils.
    Zhou W; Zhu L
    Environ Pollut; 2008 Mar; 152(1):99-105. PubMed ID: 17597273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separating the effects of organic matter-mineral interactions and organic matter chemistry on the sorption of diuron and phenanthrene.
    Ahangar AG; Smernik RJ; Kookana RS; Chittleborough DJ
    Chemosphere; 2008 Jun; 72(6):886-90. PubMed ID: 18479727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.