These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
655 related articles for article (PubMed ID: 23523887)
1. Selection and characterization of DNA aptamers for use in detection of avian influenza virus H5N1. Wang R; Zhao J; Jiang T; Kwon YM; Lu H; Jiao P; Liao M; Li Y J Virol Methods; 2013 May; 189(2):362-9. PubMed ID: 23523887 [TBL] [Abstract][Full Text] [Related]
2. Selection of DNA aptamers that bind to influenza A viruses with high affinity and broad subtype specificity. Shiratori I; Akitomi J; Boltz DA; Horii K; Furuichi M; Waga I Biochem Biophys Res Commun; 2014 Jan; 443(1):37-41. PubMed ID: 24269231 [TBL] [Abstract][Full Text] [Related]
3. Hydrogel based QCM aptasensor for detection of avian influenza virus. Wang R; Li Y Biosens Bioelectron; 2013 Apr; 42():148-55. PubMed ID: 23202345 [TBL] [Abstract][Full Text] [Related]
4. An aptamer that binds efficiently to the hemagglutinins of highly pathogenic avian influenza viruses (H5N1 and H7N7) and inhibits hemagglutinin-glycan interactions. Suenaga E; Kumar PK Acta Biomater; 2014 Mar; 10(3):1314-23. PubMed ID: 24374323 [TBL] [Abstract][Full Text] [Related]
5. A SPR aptasensor for detection of avian influenza virus H5N1. Bai H; Wang R; Hargis B; Lu H; Li Y Sensors (Basel); 2012; 12(9):12506-18. PubMed ID: 23112728 [TBL] [Abstract][Full Text] [Related]
6. Rapid detection of avian influenza virus H5N1 in chicken tracheal samples using an impedance aptasensor with gold nanoparticles for signal amplification. Karash S; Wang R; Kelso L; Lu H; Huang TJ; Li Y J Virol Methods; 2016 Oct; 236():147-156. PubMed ID: 27452670 [TBL] [Abstract][Full Text] [Related]
7. Development of ssDNA Aptamers for Diagnosis and Inhibition of the Highly Pathogenic Avian Influenza Virus Subtype H5N1. Kim SH; Choi JW; Kim AR; Lee SC; Yoon MY Biomolecules; 2020 Jul; 10(8):. PubMed ID: 32731467 [TBL] [Abstract][Full Text] [Related]
8. Selection, characterization, and application of DNA aptamers for detection of Mycobacterium tuberculosis secreted protein MPT64. Sypabekova M; Bekmurzayeva A; Wang R; Li Y; Nogues C; Kanayeva D Tuberculosis (Edinb); 2017 May; 104():70-78. PubMed ID: 28454652 [TBL] [Abstract][Full Text] [Related]
9. Highly sensitive sandwich-type SPR based detection of whole H5Nx viruses using a pair of aptamers. Nguyen VT; Seo HB; Kim BC; Kim SK; Song CS; Gu MB Biosens Bioelectron; 2016 Dec; 86():293-300. PubMed ID: 27387259 [TBL] [Abstract][Full Text] [Related]
10. Detection of H5 avian influenza viruses by antigen-capture enzyme-linked immunosorbent assay using H5-specific monoclonal antibody. He Q; Velumani S; Du Q; Lim CW; Ng FK; Donis R; Kwang J Clin Vaccine Immunol; 2007 May; 14(5):617-23. PubMed ID: 17344345 [TBL] [Abstract][Full Text] [Related]
11. An Impedance Aptasensor with Microfluidic Chips for Specific Detection of H5N1 Avian Influenza Virus. Lum J; Wang R; Hargis B; Tung S; Bottje W; Lu H; Li Y Sensors (Basel); 2015 Jul; 15(8):18565-78. PubMed ID: 26230699 [TBL] [Abstract][Full Text] [Related]
12. Aptasensors for Detection of Avian Influenza Virus H5N1. Li Y; Wang R Methods Mol Biol; 2017; 1572():379-402. PubMed ID: 28299701 [TBL] [Abstract][Full Text] [Related]
13. Isolation of single-stranded DNA aptamers that distinguish influenza virus hemagglutinin subtype H1 from H5. Woo HM; Lee JM; Yim S; Jeong YJ PLoS One; 2015; 10(4):e0125060. PubMed ID: 25901739 [TBL] [Abstract][Full Text] [Related]
14. Selection of DNA aptamers for capture and detection of Salmonella Typhimurium using a whole-cell SELEX approach in conjunction with cell sorting. Dwivedi HP; Smiley RD; Jaykus LA Appl Microbiol Biotechnol; 2013 Apr; 97(8):3677-86. PubMed ID: 23494620 [TBL] [Abstract][Full Text] [Related]
15. Potent inhibition of human influenza H5N1 virus by oligonucleotides derived by SELEX. Cheng C; Dong J; Yao L; Chen A; Jia R; Huan L; Guo J; Shu Y; Zhang Z Biochem Biophys Res Commun; 2008 Feb; 366(3):670-4. PubMed ID: 18078808 [TBL] [Abstract][Full Text] [Related]
16. Two DNA aptamers against avian influenza H9N2 virus prevent viral infection in cells. Zhang Y; Yu Z; Jiang F; Fu P; Shen J; Wu W; Li J PLoS One; 2015; 10(3):e0123060. PubMed ID: 25826217 [TBL] [Abstract][Full Text] [Related]
17. Generation of an attenuated H5N1 avian influenza virus vaccine with all eight genes from avian viruses. Shi H; Liu XF; Zhang X; Chen S; Sun L; Lu J Vaccine; 2007 Oct; 25(42):7379-84. PubMed ID: 17870216 [TBL] [Abstract][Full Text] [Related]
18. Immuno-PCR for one step detection of H5N1 avian influenza virus and Newcastle disease virus using magnetic gold particles as carriers. Deng M; Long L; Xiao X; Wu Z; Zhang F; Zhang Y; Zheng X; Xin X; Wang Q; Wu D Vet Immunol Immunopathol; 2011 Jun; 141(3-4):183-9. PubMed ID: 21511345 [TBL] [Abstract][Full Text] [Related]
19. Selection of an antiviral RNA aptamer against hemagglutinin of the subtype H5 avian influenza virus. Park SY; Kim S; Yoon H; Kim KB; Kalme SS; Oh S; Song CS; Kim DE Nucleic Acid Ther; 2011 Dec; 21(6):395-402. PubMed ID: 22017542 [TBL] [Abstract][Full Text] [Related]
20. Specific detection of avian influenza H5N2 whole virus particles on lateral flow strips using a pair of sandwich-type aptamers. Kim SH; Lee J; Lee BH; Song CS; Gu MB Biosens Bioelectron; 2019 Jun; 134():123-129. PubMed ID: 30986614 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]