These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 23524141)

  • 1. Characterizing the ear canal acoustic impedance and reflectance by pole-zero fitting.
    Robinson SR; Nguyen CT; Allen JB
    Hear Res; 2013 Jul; 301():168-82. PubMed ID: 23524141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ear-canal reflectance, umbo velocity, and tympanometry in normal-hearing adults.
    Rosowski JJ; Nakajima HH; Hamade MA; Mahfoud L; Merchant GR; Halpin CF; Merchant SN
    Ear Hear; 2012; 33(1):19-34. PubMed ID: 21857517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An analysis of the acoustic input impedance of the ear.
    Withnell RH; Gowdy LE
    J Assoc Res Otolaryngol; 2013 Oct; 14(5):611-22. PubMed ID: 23917695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sources of variability in reflectance measurements on normal cadaver ears.
    Voss SE; Horton NJ; Woodbury RR; Sheffield KN
    Ear Hear; 2008 Aug; 29(4):651-65. PubMed ID: 18600136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of ear-canal reflectance and umbo velocity in patients with conductive hearing loss: a preliminary study.
    Nakajima HH; Pisano DV; Roosli C; Hamade MA; Merchant GR; Mahfoud L; Halpin CF; Rosowski JJ; Merchant SN
    Ear Hear; 2012; 33(1):35-43. PubMed ID: 21857516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Procedures for ambient-pressure and tympanometric tests of aural acoustic reflectance and admittance in human infants and adults.
    Keefe DH; Hunter LL; Feeney MP; Fitzpatrick DF
    J Acoust Soc Am; 2015 Dec; 138(6):3625-53. PubMed ID: 26723319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of acoustic impedance and reflectance in the human ear canal.
    Voss SE; Allen JB
    J Acoust Soc Am; 1994 Jan; 95(1):372-84. PubMed ID: 8120248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of conductive hearing loss based on acoustic ear-canal response using a multivariate clinical decision theory.
    Piskorski P; Keefe DH; Simmons JL; Gorga MP
    J Acoust Soc Am; 1999 Mar; 105(3):1749-64. PubMed ID: 10089599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wideband reflectance in Down syndrome.
    Soares JC; Urosas JG; Calarga KS; Pichelli TS; Limongi SC; Shahnaz N; Carvallo RM
    Int J Pediatr Otorhinolaryngol; 2016 Aug; 87():164-71. PubMed ID: 27368466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Normative Wideband Reflectance, Equivalent Admittance at the Tympanic Membrane, and Acoustic Stapedius Reflex Threshold in Adults.
    Feeney MP; Keefe DH; Hunter LL; Fitzpatrick DF; Garinis AC; Putterman DB; McMillan GP
    Ear Hear; 2017; 38(3):e142-e160. PubMed ID: 28045835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Basic acoustic considerations of ear canal probe measurements.
    Dirks DD; Kincaid GE
    Ear Hear; 1987 Oct; 8(5 Suppl):60S-67S. PubMed ID: 3678652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of the acoustic input immittance of the human ear.
    Rabinowitz WM
    J Acoust Soc Am; 1981 Oct; 70(4):1025-35. PubMed ID: 7288039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using average correction factors to improve the estimated sound pressure level near the tympanic membrane.
    LaRae Recker K; Zhang T; Lin W
    J Am Acad Audiol; 2012 Oct; 23(9):733-50. PubMed ID: 23072965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustic mechanisms that determine the ear-canal sound pressures generated by earphones.
    Voss SE; Rosowski JJ; Shera CA; Peake WT
    J Acoust Soc Am; 2000 Mar; 107(3):1548-65. PubMed ID: 10738809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maturation of the middle and external ears: acoustic power-based responses and reflectance tympanometry.
    Keefe DH; Levi E
    Ear Hear; 1996 Oct; 17(5):361-73. PubMed ID: 8909884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled exploration of the effects of conductive hearing loss on wideband acoustic immittance in human cadaveric preparations.
    Merchant GR; Merchant SN; Rosowski JJ; Nakajima HH
    Hear Res; 2016 Nov; 341():19-30. PubMed ID: 27496538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wideband reflectance tympanometry in normal adults.
    Margolis RH; Saly GL; Keefe DH
    J Acoust Soc Am; 1999 Jul; 106(1):265-80. PubMed ID: 10420621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of ear-canal-reflectance measurement methods in an ear simulator.
    Nørgaard KR; Charaziak KK; Shera CA
    J Acoust Soc Am; 2019 Aug; 146(2):1350. PubMed ID: 31472530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-invasive estimation of middle-ear input impedance and efficiency.
    Lewis JD; Neely ST
    J Acoust Soc Am; 2015 Aug; 138(2):977-93. PubMed ID: 26328714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of bacterial biofilm in the human middle ear using optical coherence tomography and acoustic measurements.
    Nguyen CT; Robinson SR; Jung W; Novak MA; Boppart SA; Allen JB
    Hear Res; 2013 Jul; 301():193-200. PubMed ID: 23588039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.