These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 23524292)

  • 1. Global analysis of phosphorylation networks in humans.
    Hu J; Rho HS; Newman RH; Hwang W; Neiswinger J; Zhu H; Zhang J; Qian J
    Biochim Biophys Acta; 2014 Jan; 1844(1 Pt B):224-31. PubMed ID: 23524292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid modeling of the crosstalk between signaling and transcriptional networks using ordinary differential equations and multi-valued logic.
    Khan FM; Schmitz U; Nikolov S; Engelmann D; Pützer BM; Wolkenhauer O; Vera J
    Biochim Biophys Acta; 2014 Jan; 1844(1 Pt B):289-98. PubMed ID: 23692959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated module and gene-specific regulatory inference implicates upstream signaling networks.
    Roy S; Lagree S; Hou Z; Thomson JA; Stewart R; Gasch AP
    PLoS Comput Biol; 2013; 9(10):e1003252. PubMed ID: 24146602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PhosphoNetworks: a database for human phosphorylation networks.
    Hu J; Rho HS; Newman RH; Zhang J; Zhu H; Qian J
    Bioinformatics; 2014 Jan; 30(1):141-2. PubMed ID: 24227675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unraveling Kinase Activation Dynamics Using Kinase-Substrate Relationships from Temporal Large-Scale Phosphoproteomics Studies.
    Domanova W; Krycer J; Chaudhuri R; Yang P; Vafaee F; Fazakerley D; Humphrey S; James D; Kuncic Z
    PLoS One; 2016; 11(6):e0157763. PubMed ID: 27336693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstruction of global regulatory network from signaling to cellular functions using phosphoproteomic data.
    Kawata K; Yugi K; Hatano A; Kokaji T; Tomizawa Y; Fujii M; Uda S; Kubota H; Matsumoto M; Nakayama KI; Kuroda S
    Genes Cells; 2019 Jan; 24(1):82-93. PubMed ID: 30417516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust inference of kinase activity using functional networks.
    Yılmaz S; Ayati M; Schlatzer D; Çiçek AE; Chance MR; Koyutürk M
    Nat Commun; 2021 Feb; 12(1):1177. PubMed ID: 33608514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative phosphoproteomics-based molecular network description for high-resolution kinase-substrate interactome analysis.
    Narushima Y; Kozuka-Hata H; Tsumoto K; Inoue J; Oyama M
    Bioinformatics; 2016 Jul; 32(14):2083-8. PubMed ID: 27153602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing regulatory path motifs in integrated networks using perturbational data.
    Joshi A; Van Parys T; Van de Peer Y; Michoel T
    Genome Biol; 2010; 11(3):R32. PubMed ID: 20230615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating phosphorylation network with transcriptional network reveals novel functional relationships.
    Wang L; Hou L; Qian M; Deng M
    PLoS One; 2012; 7(3):e33160. PubMed ID: 22432002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An integrated regulatory network reveals pervasive cross-regulation among transcription and splicing factors.
    Kosti I; Radivojac P; Mandel-Gutfreund Y
    PLoS Comput Biol; 2012; 8(7):e1002603. PubMed ID: 22844237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elucidation of the evolutionary expansion of phosphorylation signaling networks using comparative phosphomotif analysis.
    Yoshizaki H; Okuda S
    BMC Genomics; 2014 Jul; 15(1):546. PubMed ID: 24981518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of Signed Protein Kinase Regulatory Circuits.
    Invergo BM; Petursson B; Akhtar N; Bradley D; Giudice G; Hijazi M; Cutillas P; Petsalaki E; Beltrao P
    Cell Syst; 2020 May; 10(5):384-396.e9. PubMed ID: 32437683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-Scale Analysis of Kinase Signaling in Yeast Pseudohyphal Development Identifies Regulation of Ribonucleoprotein Granules.
    Shively CA; Kweon HK; Norman KL; Mellacheruvu D; Xu T; Sheidy DT; Dobry CJ; Sabath I; Cosky EE; Tran EJ; Nesvizhskii A; Andrews PC; Kumar A
    PLoS Genet; 2015 Oct; 11(10):e1005564. PubMed ID: 26447709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the basic computational structure of gene regulatory networks.
    Rodríguez-Caso C; Corominas-Murtra B; Solé RV
    Mol Biosyst; 2009 Dec; 5(12):1617-29. PubMed ID: 19763330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An overview of bioinformatics methods for modeling biological pathways in yeast.
    Hou J; Acharya L; Zhu D; Cheng J
    Brief Funct Genomics; 2016 Mar; 15(2):95-108. PubMed ID: 26476430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One hub-one process: a tool based view on regulatory network topology.
    Axelsen JB; Bernhardsson S; Sneppen K
    BMC Syst Biol; 2008 Mar; 2():25. PubMed ID: 18318890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Briefing in family characteristics of microRNAs and their applications in cancer research.
    Wang Q; Wei L; Guan X; Wu Y; Zou Q; Ji Z
    Biochim Biophys Acta; 2014 Jan; 1844(1 Pt B):191-7. PubMed ID: 23954304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A systems biology approach to the identification and analysis of transcriptional regulatory networks in osteocytes.
    Dean AK; Harris SE; Kalajzic I; Ruan J
    BMC Bioinformatics; 2009 Sep; 10 Suppl 9(Suppl 9):S5. PubMed ID: 19761575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated Strategies to Gain a Systems-Level View of Dynamic Signaling Networks.
    Newman RH; Zhang J
    Methods Enzymol; 2017; 589():133-170. PubMed ID: 28336062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.