These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
312 related articles for article (PubMed ID: 23524982)
1. Ex vivo red blood cell hemolysis assay for the evaluation of pH-responsive endosomolytic agents for cytosolic delivery of biomacromolecular drugs. Evans BC; Nelson CE; Yu SS; Beavers KR; Kim AJ; Li H; Nelson HM; Giorgio TD; Duvall CL J Vis Exp; 2013 Mar; (73):e50166. PubMed ID: 23524982 [TBL] [Abstract][Full Text] [Related]
2. The efficiency of cytosolic drug delivery using pH-responsive endosomolytic polymers does not correlate with activation of the NLRP3 inflammasome. Baljon JJ; Dandy A; Wang-Bishop L; Wehbe M; Jacobson ME; Wilson JT Biomater Sci; 2019 Apr; 7(5):1888-1897. PubMed ID: 30843539 [TBL] [Abstract][Full Text] [Related]
3. The design and synthesis of polymers for eukaryotic membrane disruption. Murthy N; Robichaud JR; Tirrell DA; Stayton PS; Hoffman AS J Control Release; 1999 Aug; 61(1-2):137-43. PubMed ID: 10469910 [TBL] [Abstract][Full Text] [Related]
4. Demonstration of intracellular trafficking, cytosolic bioavailability, and target manipulation of an antibody delivery platform. Lv W; Champion JA Nanomedicine; 2021 Feb; 32():102315. PubMed ID: 33065253 [TBL] [Abstract][Full Text] [Related]
5. Delivery of macromolecules using arginine-rich cell-penetrating peptides: ways to overcome endosomal entrapment. El-Sayed A; Futaki S; Harashima H AAPS J; 2009 Mar; 11(1):13-22. PubMed ID: 19125334 [TBL] [Abstract][Full Text] [Related]
6. Hemolysis of human erythrocytes with saponin affects the membrane structure. Baumann E; Stoya G; Völkner A; Richter W; Lemke C; Linss W Acta Histochem; 2000 Feb; 102(1):21-35. PubMed ID: 10726162 [TBL] [Abstract][Full Text] [Related]
7. Gelatin-based nanoparticles as DNA delivery systems: Synthesis, physicochemical and biocompatible characterization. Morán MC; Rosell N; Ruano G; Busquets MA; Vinardell MP Colloids Surf B Biointerfaces; 2015 Oct; 134():156-68. PubMed ID: 26188853 [TBL] [Abstract][Full Text] [Related]
8. Poly(amidoamine)s as potential endosomolytic polymers: evaluation in vitro and body distribution in normal and tumour-bearing animals. Richardson S; Ferruti P; Duncan R J Drug Target; 1999; 6(6):391-404. PubMed ID: 10937285 [TBL] [Abstract][Full Text] [Related]
9. Endolysosomal environment-responsive photodynamic nanocarrier to enhance cytosolic drug delivery via photosensitizer-mediated membrane disruption. Lee CS; Park W; Park SJ; Na K Biomaterials; 2013 Dec; 34(36):9227-36. PubMed ID: 24008035 [TBL] [Abstract][Full Text] [Related]
10. Poly(2-alkylacrylic acid) polymers deliver molecules to the cytosol by pH-sensitive disruption of endosomal vesicles. Jones RA; Cheung CY; Black FE; Zia JK; Stayton PS; Hoffman AS; Wilson MR Biochem J; 2003 May; 372(Pt 1):65-75. PubMed ID: 12583812 [TBL] [Abstract][Full Text] [Related]
11. Spatiotemporal monitoring endocytic and cytosolic pH gradients with endosomal escaping pH-responsive micellar nanocarriers. Hu J; Liu G; Wang C; Liu T; Zhang G; Liu S Biomacromolecules; 2014 Nov; 15(11):4293-301. PubMed ID: 25317967 [TBL] [Abstract][Full Text] [Related]
12. Nanocarriers escaping from hyperacidified endo/lysosomes in cancer cells allow tumor-targeted intracellular delivery of antibodies to therapeutically inhibit c-MYC. Chen P; Yang W; Hong T; Miyazaki T; Dirisala A; Kataoka K; Cabral H Biomaterials; 2022 Sep; 288():121748. PubMed ID: 36038419 [TBL] [Abstract][Full Text] [Related]
13. A quantitative study of the intracellular fate of pH-responsive doxorubicin-polypeptide nanoparticles. Wang J; Bhattacharyya J; Mastria E; Chilkoti A J Control Release; 2017 Aug; 260():100-110. PubMed ID: 28576641 [TBL] [Abstract][Full Text] [Related]
15. Cytosolic delivery of macromolecules. II. Mechanistic studies with pH-sensitive morpholine lipids. Asokan A; Cho MJ Biochim Biophys Acta; 2003 Apr; 1611(1-2):151-60. PubMed ID: 12659956 [TBL] [Abstract][Full Text] [Related]
16. A new pH-responsive and glutathione-reactive, endosomal membrane-disruptive polymeric carrier for intracellular delivery of biomolecular drugs. Bulmus V; Woodward M; Lin L; Murthy N; Stayton P; Hoffman A J Control Release; 2003 Dec; 93(2):105-20. PubMed ID: 14636717 [TBL] [Abstract][Full Text] [Related]
17. Metal-Organic Framework-Based Nanoplatform for Intracellular Environment-Responsive Endo/Lysosomal Escape and Enhanced Cancer Therapy. Dong K; Wang Z; Zhang Y; Ren J; Qu X ACS Appl Mater Interfaces; 2018 Sep; 10(38):31998-32005. PubMed ID: 30178654 [TBL] [Abstract][Full Text] [Related]
18. Modeling of the endosomolytic activity of HA2-TAT peptides with red blood cells and ghosts. Lee YJ; Johnson G; Pellois JP Biochemistry; 2010 Sep; 49(36):7854-66. PubMed ID: 20704453 [TBL] [Abstract][Full Text] [Related]
19. Melatonin protects human red blood cells from oxidative hemolysis: new insights into the radical-scavenging activity. Tesoriere L; D'Arpa D; Conti S; Giaccone V; Pintaudi AM; Livrea MA J Pineal Res; 1999 Sep; 27(2):95-105. PubMed ID: 10496145 [TBL] [Abstract][Full Text] [Related]
20. Understanding the mechanism of action of poly(amidoamine)s as endosomolytic polymers: correlation of physicochemical and biological properties. Griffiths PC; Paul A; Khayat Z; Wan KW; King SM; Grillo I; Schweins R; Ferruti P; Franchini J; Duncan R Biomacromolecules; 2004; 5(4):1422-7. PubMed ID: 15244460 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]