These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 23525197)

  • 1. First principles investigation of zinc-anode dissolution in zinc-air batteries.
    Siahrostami S; Tripković V; Lundgaard KT; Jensen KE; Hansen HA; Hummelshøj JS; Mýrdal JS; Vegge T; Nørskov JK; Rossmeisl J
    Phys Chem Chem Phys; 2013 May; 15(17):6416-21. PubMed ID: 23525197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined DFT and Differential Electrochemical Mass Spectrometry Investigation of the Effect of Dopants in Secondary Zinc-Air Batteries.
    Lysgaard S; Christensen MK; Hansen HA; García Lastra JM; Norby P; Vegge T
    ChemSusChem; 2018 Jun; 11(12):1933-1941. PubMed ID: 29601151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Al-Air Batteries: Fundamental Thermodynamic Limitations from First-Principles Theory.
    Chen LD; Nørskov JK; Luntz AC
    J Phys Chem Lett; 2015 Jan; 6(1):175-9. PubMed ID: 26263108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding side reactions in K-O2 batteries for improved cycle life.
    Ren X; Lau KC; Yu M; Bi X; Kreidler E; Curtiss LA; Wu Y
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):19299-307. PubMed ID: 25295518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quasi-perpetual discharge behaviour in p-type Ge-air batteries.
    Ocon JD; Kim JW; Abrenica GH; Lee JK; Lee J
    Phys Chem Chem Phys; 2014 Nov; 16(41):22487-94. PubMed ID: 24975009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation on the heavy-metal content of zinc-air button cells.
    Richter A; Richter S; Recknagel S
    Waste Manag; 2008; 28(8):1493-7. PubMed ID: 18280730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts.
    Cheng F; Chen J
    Chem Soc Rev; 2012 Mar; 41(6):2172-92. PubMed ID: 22254234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unveiling the charge migration mechanism in Na2O2: implications for sodium-air batteries.
    Araujo RB; Chakraborty S; Ahuja R
    Phys Chem Chem Phys; 2015 Mar; 17(12):8203-9. PubMed ID: 25732774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent advances in zinc-air batteries.
    Li Y; Dai H
    Chem Soc Rev; 2014 Aug; 43(15):5257-75. PubMed ID: 24926965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methods for producing an easily assembled zinc-air battery.
    Zhao Z; Liu B; Fan X; Liu X; Ding J; Hu W; Zhong C
    MethodsX; 2020; 7():100973. PubMed ID: 32637342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoinduced Oxygen Reduction Reaction Boosts the Output Voltage of a Zinc-Air Battery.
    Zhu D; Zhao Q; Fan G; Zhao S; Wang L; Li F; Chen J
    Angew Chem Int Ed Engl; 2019 Sep; 58(36):12460-12464. PubMed ID: 31273902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New insight into the discharge mechanism of silicon-air batteries using electrochemical impedance spectroscopy.
    Cohn G; Eichel RA; Ein-Eli Y
    Phys Chem Chem Phys; 2013 Mar; 15(9):3256-63. PubMed ID: 23348151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sodium-oxygen batteries with alkyl-carbonate and ether based electrolytes.
    Kim J; Lim HD; Gwon H; Kang K
    Phys Chem Chem Phys; 2013 Mar; 15(10):3623-9. PubMed ID: 23386220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discharge Performance of Zinc-Air Flow Batteries Under the Effects of Sodium Dodecyl Sulfate and Pluronic F-127.
    Hosseini S; Lao-Atiman W; Han SJ; Arpornwichanop A; Yonezawa T; Kheawhom S
    Sci Rep; 2018 Oct; 8(1):14909. PubMed ID: 30297883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combinatorial electrochemical cell array for high throughput screening of micro-fuel-cells and metal/air batteries.
    Jiang R
    Rev Sci Instrum; 2007 Jul; 78(7):072209. PubMed ID: 17672740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In operando monitoring of the state of charge and species distribution in zinc air batteries using X-ray tomography and model-based simulations.
    Arlt T; Schröder D; Krewer U; Manke I
    Phys Chem Chem Phys; 2014 Oct; 16(40):22273-80. PubMed ID: 25220061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First investigation on charge-discharge reaction mechanism of aqueous lithium ion batteries: a new anode material of Ag2V4O11 nanobelts.
    Xu Y; Han X; Zheng L; Wei S; Xie Y
    Dalton Trans; 2011 Oct; 40(40):10751-7. PubMed ID: 21946774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.