These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 23525462)

  • 1. Structural analyses of the bacterial primosomal protein DnaB reveal that it is a tetramer and forms a complex with a primosomal re-initiation protein.
    Li YC; Naveen V; Lin MG; Hsiao CD
    J Biol Chem; 2017 Sep; 292(38):15744-15757. PubMed ID: 28808061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping protein-protein interactions within a stable complex of DNA primase and DnaB helicase from Bacillus stearothermophilus.
    Bird LE; Pan H; Soultanas P; Wigley DB
    Biochemistry; 2000 Jan; 39(1):171-82. PubMed ID: 10625492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of the complex of the interaction domains of Escherichia coli DnaB helicase and DnaC helicase loader: structural basis implying a distortion-accumulation mechanism for the DnaB ring opening caused by DnaC binding.
    Nagata K; Okada A; Ohtsuka J; Ohkuri T; Akama Y; Sakiyama Y; Miyazaki E; Horita S; Katayama T; Ueda T; Tanokura M
    J Biochem; 2020 Jan; 167(1):1-14. PubMed ID: 31665315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Bacillus subtilis DnaD and DnaB proteins exhibit different DNA remodelling activities.
    Zhang W; Carneiro MJ; Turner IJ; Allen S; Roberts CJ; Soultanas P
    J Mol Biol; 2005 Aug; 351(1):66-75. PubMed ID: 16002087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frequent nonhomologous replacement of replicative helicase loaders by viruses in
    Tominaga K; Ozaki S; Sato S; Katayama T; Nishimura Y; Omae K; Iwasaki W
    Proc Natl Acad Sci U S A; 2024 May; 121(19):e2317954121. PubMed ID: 38683976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleotide Binding Modes in a Motor Protein Revealed by
    Wiegand T; Schledorn M; Malär AA; Cadalbert R; Däpp A; Terradot L; Meier BH; Böckmann A
    Chembiochem; 2020 Feb; 21(3):324-330. PubMed ID: 31310428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Localization of bacterial DNA polymerase: evidence for a factory model of replication.
    Lemon KP; Grossman AD
    Science; 1998 Nov; 282(5393):1516-9. PubMed ID: 9822387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analyzing Protein Architectures and Protein-Ligand Complexes by Integrative Structural Mass Spectrometry.
    Ahdash Z; Lau AM; Martens C; Politis A
    J Vis Exp; 2018 Oct; (140):. PubMed ID: 30371663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacillus subtilis RarA modulates replication restart.
    Carrasco B; Seco EM; López-Sanz M; Alonso JC; Ayora S
    Nucleic Acids Res; 2018 Aug; 46(14):7206-7220. PubMed ID: 29947798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic insight into the assembly of the HerA-NurA helicase-nuclease DNA end resection complex.
    Ahdash Z; Lau AM; Byrne RT; Lammens K; Stüetzer A; Urlaub H; Booth PJ; Reading E; Hopfner KP; Politis A
    Nucleic Acids Res; 2017 Nov; 45(20):12025-12038. PubMed ID: 29149348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions of the
    Paschalis V; Le Chatelier E; Green M; Nouri H; Képès F; Soultanas P; Janniere L
    Open Biol; 2017 Sep; 7(9):. PubMed ID: 28878042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Primase is required for helicase activity and helicase alters the specificity of primase in the enteropathogen Clostridium difficile.
    van Eijk E; Paschalis V; Green M; Friggen AH; Larson MA; Spriggs K; Briggs GS; Soultanas P; Smits WK
    Open Biol; 2016 Dec; 6(12):. PubMed ID: 28003473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleotide and partner-protein control of bacterial replicative helicase structure and function.
    Strycharska MS; Arias-Palomo E; Lyubimov AY; Erzberger JP; O'Shea VL; Bustamante CJ; Berger JM
    Mol Cell; 2013 Dec; 52(6):844-54. PubMed ID: 24373746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure and mode of helicase binding of the C-terminal domain of primase from Helicobacter pylori.
    Abdul Rehman SA; Verma V; Mazumder M; Dhar SK; Gourinath S
    J Bacteriol; 2013 Jun; 195(12):2826-38. PubMed ID: 23585534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into the structure and assembly of the Bacillus subtilis clamp-loader complex and its interaction with the replicative helicase.
    Afonso JP; Chintakayala K; Suwannachart C; Sedelnikova S; Giles K; Hoyes JB; Soultanas P; Rafferty JB; Oldham NJ
    Nucleic Acids Res; 2013 May; 41(9):5115-26. PubMed ID: 23525462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The clamp-loader-helicase interaction in Bacillus. Atomic force microscopy reveals the structural organisation of the DnaB-tau complex in Bacillus.
    Haroniti A; Anderson C; Doddridge Z; Gardiner L; Roberts CJ; Allen S; Soultanas P
    J Mol Biol; 2004 Feb; 336(2):381-93. PubMed ID: 14757052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Allosteric regulation of the primase (DnaG) activity by the clamp-loader (tau) in vitro.
    Chintakayala K; Machón C; Haroniti A; Larson MA; Hinrichs SH; Griep MA; Soultanas P
    Mol Microbiol; 2009 Apr; 72(2):537-49. PubMed ID: 19415803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Helicase binding to DnaI exposes a cryptic DNA-binding site during helicase loading in Bacillus subtilis.
    Ioannou C; Schaeffer PM; Dixon NE; Soultanas P
    Nucleic Acids Res; 2006; 34(18):5247-58. PubMed ID: 17003052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clamp-loader-helicase interaction in Bacillus. Leucine 381 is critical for pentamerization and helicase binding of the Bacillus tau protein.
    Haroniti A; Till R; Smith MC; Soultanas P
    Biochemistry; 2003 Sep; 42(37):10955-64. PubMed ID: 12974630
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.