These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 23525516)

  • 1. Human Object-Similarity Judgments Reflect and Transcend the Primate-IT Object Representation.
    Mur M; Meys M; Bodurka J; Goebel R; Bandettini PA; Kriegeskorte N
    Front Psychol; 2013; 4():128. PubMed ID: 23525516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visual features as stepping stones toward semantics: Explaining object similarity in IT and perception with non-negative least squares.
    Jozwik KM; Kriegeskorte N; Mur M
    Neuropsychologia; 2016 Mar; 83():201-226. PubMed ID: 26493748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Object category structure in response patterns of neuronal population in monkey inferior temporal cortex.
    Kiani R; Esteky H; Mirpour K; Tanaka K
    J Neurophysiol; 2007 Jun; 97(6):4296-309. PubMed ID: 17428910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unique semantic space in the brain of each beholder predicts perceived similarity.
    Charest I; Kievit RA; Schmitz TW; Deca D; Kriegeskorte N
    Proc Natl Acad Sci U S A; 2014 Oct; 111(40):14565-70. PubMed ID: 25246586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disentangling Representations of Object Shape and Object Category in Human Visual Cortex: The Animate-Inanimate Distinction.
    Proklova D; Kaiser D; Peelen MV
    J Cogn Neurosci; 2016 May; 28(5):680-92. PubMed ID: 26765944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep supervised, but not unsupervised, models may explain IT cortical representation.
    Khaligh-Razavi SM; Kriegeskorte N
    PLoS Comput Biol; 2014 Nov; 10(11):e1003915. PubMed ID: 25375136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of animal faces in the animate-inanimate distinction in the ventral temporal cortex.
    Proklova D; Goodale MA
    Neuropsychologia; 2022 May; 169():108192. PubMed ID: 35245528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Matching categorical object representations in inferior temporal cortex of man and monkey.
    Kriegeskorte N; Mur M; Ruff DA; Kiani R; Bodurka J; Esteky H; Tanaka K; Bandettini PA
    Neuron; 2008 Dec; 60(6):1126-41. PubMed ID: 19109916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Convolutional Neural Networks Outperform Feature-Based But Not Categorical Models in Explaining Object Similarity Judgments.
    Jozwik KM; Kriegeskorte N; Storrs KR; Mur M
    Front Psychol; 2017; 8():1726. PubMed ID: 29062291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cortical representation of animate and inanimate objects in complex natural scenes.
    Naselaris T; Stansbury DE; Gallant JL
    J Physiol Paris; 2012; 106(5-6):239-49. PubMed ID: 22472178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Ventral Visual Pathway Represents Animal Appearance over Animacy, Unlike Human Behavior and Deep Neural Networks.
    Bracci S; Ritchie JB; Kalfas I; Op de Beeck HP
    J Neurosci; 2019 Aug; 39(33):6513-6525. PubMed ID: 31196934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The representation of biological classes in the human brain.
    Connolly AC; Guntupalli JS; Gors J; Hanke M; Halchenko YO; Wu YC; Abdi H; Haxby JV
    J Neurosci; 2012 Feb; 32(8):2608-18. PubMed ID: 22357845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Animacy and real-world size shape object representations in the human medial temporal lobes.
    Blumenthal A; Stojanoski B; Martin CB; Cusack R; Köhler S
    Hum Brain Mapp; 2018 Sep; 39(9):3779-3792. PubMed ID: 29947037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Categorical representation from sound and sight in the ventral occipito-temporal cortex of sighted and blind.
    Mattioni S; Rezk M; Battal C; Bottini R; Cuculiza Mendoza KE; Oosterhof NN; Collignon O
    Elife; 2020 Feb; 9():. PubMed ID: 32108572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MEG sensor patterns reflect perceptual but not categorical similarity of animate and inanimate objects.
    Proklova D; Kaiser D; Peelen MV
    Neuroimage; 2019 Jun; 193():167-177. PubMed ID: 30885785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fine-grained stimulus representations in body selective areas of human occipito-temporal cortex.
    Caspari N; Popivanov ID; De Mazière PA; Vanduffel W; Vogels R; Orban GA; Jastorff J
    Neuroimage; 2014 Nov; 102 Pt 2():484-97. PubMed ID: 25109529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crossmodal Association of Visual and Haptic Material Properties of Objects in the Monkey Ventral Visual Cortex.
    Goda N; Yokoi I; Tachibana A; Minamimoto T; Komatsu H
    Curr Biol; 2016 Apr; 26(7):928-34. PubMed ID: 26996504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A humanness dimension to visual object coding in the brain.
    Contini EW; Goddard E; Grootswagers T; Williams M; Carlson T
    Neuroimage; 2020 Nov; 221():117139. PubMed ID: 32663643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Within-category representational stability through the lens of manipulable objects.
    Lee D; Almeida J
    Cortex; 2021 Apr; 137():282-291. PubMed ID: 33662692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Task-context-dependent Linear Representation of Multiple Visual Objects in Human Parietal Cortex.
    Jeong SK; Xu Y
    J Cogn Neurosci; 2017 Oct; 29(10):1778-1789. PubMed ID: 28598733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.